А. Е. Букатов , А. А. Букатов*

Морской гидрофизический институт РАН, Севастополь, Россия

*E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Аннотация

На основе построенных методом многих масштабов асимптотических разложений до величин третьего порядка малости для потенциала скорости движения однородной жидкости конечной глубины и для возвышения поверхности пластинка  жидкость (лед  вода) проанализированы дисперсионные свойства колебаний, формируемых при взаимодействии прогрессивных гармоник поверхностных волн конечной амплитуды. Рассмотрены изменения частоты колебаний за счет вклада обусловленных учетом нелинейности величин первого и второго приближений. Исследовано влияние нелинейности ускорения вертикальных смещений ледяной пластинки на амплитуду, частоту и фазовую скорость волновых возмущений. Показано, что частота колебаний при волновых числах, бóльших максимального резонансного значения, увеличивается при учете нелинейности ускорения вертикальных смещений пластинки. Растет она и при увеличении толщины пластинки, а смена знака (с плюса на минус) амплитуды второй взаимодействующей гармоники уменьшает значение частоты при фиксированном волновом числе. Рост фазовой скорости при учете нелинейности ускорения значительнее, чем без учета. При отрицательном значении амплитуды второй взаимодействующей гармоники фазовая скорость в случае учета нелинейности ускорения меньше, чем без учета.

Ключевые слова

колебания ледяной пластинки, волны конечной амплитуды, нелинейное взаимодействие волн, изгибная деформация пластинки, фазовые характеристики.

DOI: 10.22449/0233-7584-2018-1-5-19

Скачать статью в PDF-формате