Non-linear pumping effect in oscillatory diffusive processes and its physical consequences for the World Ocean deep layers and lakes

V.N. Zyryanov1, 2

1 Water Problems Institute, RAS, Moscow, Russia

2 Lomonosov Moscow State University, Physical Department, Moscow, Russia

e-mail: zyryanov@aqua.laser.ru

Аннотация

The physical mechanism of heat transmission in oscillatory processes is described. The effect manifestation in the process of integral heat exchange in the World Ocean deep layers is studied within the frame of a simple one-dimensional approach. The sea surface temperature (SST) has long-term oscillations with amplitudes greater than the trend in mean-temperature increase. The oscillations of SST lead to nonlinear pumping effect in oscillatory processes; heat is pumped out from or into the deep layers, depending on oscillation amplitudes. With increasing SST oscillation amplitudes, the heat comes out and deep layers are cooled, otherwise, with decreasing amplitudes, the heat spreads into the deep layers.

Ключевые слова

pumping effect, heat transmission in oscillatory processes, sea surface temperature, one-dimensional model, deep layers of the World Ocean

Для цитирования

Zyryanov V.N. Non-linear pumping effect in oscillatory diffusive processes and its physical consequences for the World Ocean deep layers and lakes // Морской гидрофизический журнал. 2013. № 5. С. 18-35. EDN TGGUNF.

Zyryanov, V.N., 2013. Non-linear pumping effect in oscillatory diffusive processes and its physical consequences for the World Ocean deep layers and lakes. Morskoy Gidrofizicheskiy Zhurnal, (5), pp. 18-35.

Список литературы

  1. Levitus S., Antonov J., Boyer T. et al. Warming of the World Ocean // Science. – 2000. – 287. – P. 2225 – 2229.
  2. Dijkstra H.A. Nonlinear Physical Oceanography. 2nd ed. – Springer, 2005. – 680 p.
  3. Nikiforov E.G., Blinov N.I., Lukin V.V. Results of the expeditional research in the Arctic by program POLEX – North-76. – Hydrometeoizdat, 1979. – 1. – P. 129 – 147.
  4. Frolov I.E., Gudrovich Z.M., Radionov V.F. et al. Scientific research in the Arctic. 1. The research stations «North Pole». – St. Petersburg: Nauka, 2005. – 268 p.
  5. Rojkova A.U., Dmitrenko I.A., Bauh D. et al. The Barents branch of the Atlantic water feature change (Nansens kettle) under the influence of atmospheric circulation above Barents Sea // Dokl. Earth Sci. – 2008. – 418, № 3. – P. 401 – 406.
  6. Vargas-Yáñez M., Parrilla G., Lavín A. et al. Temperature and salinity increase in the eastern North Atlantic along the 24.5°N in the last ten years // Geophys. Res. Lett. – 2004. – 31. – L06210, doi:10.1029/2003GL019308.
  7. Sarafanov A., Sokov A., Demidov A. et al. Warming and salinification of intermediate and deep waters in the Irminger Sea and Iceland Basin in 1997 – 2006 // Ibid. – 2007. – 34. – L23609, doi: 10.1029/2007GL031074.
  8. Shimaraev M.N., Troitskaya E.S., Gnatovskiy R.Yu. Temperature change of deep waters of Baikal Lake in 1972 – 2007 years // Geograph. Nat. Resourc. – 2009. – № 3. – P. 68 – 76.
  9. Philip J.R. Periodic nonlinear diffusion: an integral relation and its physical consequences // Austral. J. Phys. – 1973. – 26. – P. 513 – 519.
  10. Zyryanov V.N., Khublaryan M.G. Pumping effect in the theory of nonlinear processes of the thermal conductivity equation type and its applications in geophysics // Dokl. Earth Sci. – 2006. – 408, № 4. – P. 674 – 677.
  11. Gargett A.E. Vertical eddy diffusivity in the ocean interior // J. Mar. Res. – 1984. – 42, № 2. – P. 359 – 393.
  12. Stigebrandt A. A model for the vertical circulation of the Baltic deep water // J. Phys. Ocean- ogr. – 1987. – 17. – P. 1772 – 1785.
  13. Ozmidov R.V. Horizontal turbulence and turbulent exchange in the ocean. – Moscow: Nauka, 1968. – 199 p.
  14. Monin A.S., Neiman V.G., Filyushkin B.N. On the density stratification in the ocean // Dokl. Earth Sci. – 1970. – 191, № 6. – P. 1277 – 1279.
  15. Emery W.J., Lee W.G., Magaard L. Geographic distribution of density, Brunt – Váisálá fre- quency and Rossby radii in the North Pacific and North Atlantic // J. Phys. Oceanogr. – 1984. – 14. – P. 294 – 317.
  16. Munk W., Wunsch C. Abissal recipes II: energetics of tidal and wind mixing // Deep-Sea Res. I. – 1998. – 45. – P. 1977 – 2010.
  17. Reid G.C. Solar total irradiance variations and the global sea surface temperature record // J. Geophys. Res.-Atmos. – 1991. – 96, D2. – P. 2835 – 2844.
  18. Pokrovskii O.M. Ocean surface temperature as an indicator of natural climate oscillations in temperature and high latitudes of the northern hemisphere // Issledovanie Zemli iz Kosmosa. – 2005. – 6. – P. 3 – 13 (in Russian).
  19. Galerkin L.I., Barash M.B., Sapojnikov V.V. et al. The Pacific Ocean. – Moscow: Mysl', 1982. – 316 p.
  20. Friis-Christensen E., Lassen K. Length of solar cycle: an indicator of solar activity closely associated with climate // Science. – 1991. – 254 (5032). – P. 698 – 700.
  21. Levitus S. Interpentadal variability of temperature and salinity at intermediate depths of the North Atlantic Ocean. 1970 – 1974 Versus 1955 – 1959 // JGR-Oceans. – 1989. – 94, № C5. – P. 6091 – 6131.
  22. Zyryanov V.N. Anti-warming of deep layers in the World Ocean // Oceanology. – 2007. – 47, № 5. – P. 618 – 625.
  23. Zyryanov V.N. Nonlinear pumping effect in oscillation processes in geophysics // Water Resources. – 2013. – 40, № 3. – P. 243 – 253, doi: 10.1134/S0097807813030093.

Скачать статью в PDF-формате