УДК 551.46.08

Проявление эффектов солнечного блика при определении оптических параметров воды в Черном море по спутниковым измерениям

© 2016 В.С. Суетин, С.Н. Королев, А.А. Кучерявый

Морской гидрофизический институт РАН, Севастополь, Россия

Поступила в редакцию 14.12.2015 г.

Рассмотрены характерные примеры проявлений влияния солнечного блика на результаты определения оптических параметров воды в Черном море по данным спутникового прибора MODIS. Установлено, что при использовании комплексного метода GIOP концентрация хлорофилла a и показатели поглощения света фитопланктоном и желтым веществом определяются с большими погрешностями даже при умеренном по силе блике. При этом вызванные бликом искажения в спектрах показателей полного поглощения и обратного рассеяния меньше, но тоже отчетливо выражены.

Ключевые слова: спутниковые наблюдения, Черное море, солнечный блик, оптические характеристики, хлорофилл a.

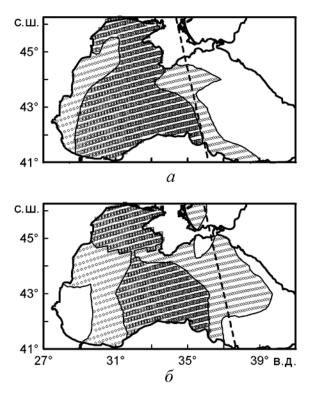
Введение. Информация, поступающая от работающих в космосе оптических приборов такого типа, как SeaWiFS, MODIS и т. п., может быть полезной при решении многих научных и практических задач, связанных с изучением и контролем разнообразных процессов изменчивости состояния морских акваторий [1, 2]. Установленная на спутнике аппаратура с высокой точностью регистрирует уходящее в космос излучение различных длин волн видимого диапазона спектра. При этом выполняются систематические глобальные наблюдения в широкой полосе обзора с пространственным разрешением \sim 1 км. Получаемые данные и результаты их обработки по единым универсальным методикам накапливаются в архивах NASA, открытых для общего свободного доступа через Интернет (http://oceancolor.gsfc.nasa.gov/).

Чтобы эффективно использовать такие данные, необходимо иметь правильное понимание их достоверности и учитывать действие разнообразных факторов, от которых она может зависеть. Одним из таких факторов является солнечный блик [3].

Блик приводит к росту регистрируемой на спутнике суммарной яркости системы море — атмосфера и зависит от волнения на поверхности моря, скорости приводного ветра, угловой структуры съемки и освещения моря солнечными лучами, а также от оптических свойств атмосферы. Угловая структура определяется особенностями конструкции прибора, орбиты спутника и изменениями положения Солнца на небосводе в зависимости от времени суток и календарной даты съемки.

Блик по-разному проявляется в измеряемом излучении различных длин волн, поэтому связанные с ним эффекты могут приводить к большим ошиб-

кам при определении параметров моря с использованием таких комплексных методов, как, например, Generalized ocean color inversion model for retrieving marine inherent optical properties (GIOP) [4].


С целью изучения возникающих при этом вопросов рассмотрим примеры результатов совместных наблюдений Черного моря приборами SeaWiFS и MODIS. Используемые ниже данные MODIS получены прибором, установленным на спутнике Aqua. В течение длительного времени MODIS и SeaWiFS независимо работали на двух спутниках с различными параметрами орбиты и выполняли съемки совпадающих участков моря под разными углами с небольшой разницей по времени.

Вследствие конструкционных особенностей этих приборов интенсивность проявлений солнечного блика в их показаниях существенно различается. Для ослабления эффектов блика SeaWiFS оснащен механизмом наклона плоскости сканирования в сторону, противоположную направлению на Солнце; MODIS не имеет такого механизма, поэтому получаемые с его помощью результаты в большей мере подвержены бликовым эффектам. Сопоставление данных, полученных двумя приборами, позволяет понять основные закономерности проявлений влияния блика на результаты спутниковых наблюдений.

Тестовый материал. В ходе обработки показаний установленной на спутнике аппаратуры определяются параметры, характеризующие свойства атмосферы и воды в верхнем слое моря. Прежде всего это коэффициенты яркости морской поверхности $R_{\rm rs}(\lambda)$ для ряда длин волн излучения λ , концентрация хлорофилла a, оптическая толщина аэрозольной составляющей атмосферы τ_a для опорной длины волны λ_0 , показатель Ангстрема α , характеризующий спектральную зависимость величины τ_a . Ниже будут рассматриваться также результаты вычисления показателей поглощения $a(\lambda)$ и обратного рассеяния $b_b(\lambda)$ света в море.

Помимо основных параметров в числе продуктов обработки спутниковых данных содержатся специальные вспомогательные индикаторы - так называемые флаги, которые могут принимать значения 0 или 1. Для указания измерений с вероятными проявлениями солнечного блика служат флаги 4 и 21. В рассматриваемых ниже тестовых данных все другие флаги имеют нулевые значения, говорящие о том, что эти данные не содержат явных дефектов или искажений, кроме тех, которые могут быть связаны с бликом. Полное описание системы флагов можно найти на сайте NASA. Равным 1 флагом с номером 21 отмечается область слабого блика, флагом с номером 4 – зона более сильного блика. При обработке отсчетов, отмеченных этими флагами, вносится дополнительная коррекция, учитывающая обусловленные бликом искажения. Для определения числовых значений флагов 4 и 21 и для выполнения коррекции проводятся модельные расчеты связанных с бликом эффектов [3]. При этом блик представляется в виде аддитивной добавки к измеряемой в космосе яркости системы море – атмосфера, а необходимая для расчетов скорость ветра задается согласно сопутствующим метеорологическим данным. На этапе формирования итоговых массивов третьего уровня (формата Level-3) флаг 4 выступает в качестве маски для отбраковки данных, мало пригодных для практического использования.

О том, насколько важную роль играют связанные с бликом эффекты, можно судить по представленным на рис. 1 примерам, полученным по результатам съемок Черного моря прибором *MODIS* 9.06.2003 г. и 12.05.2007 г. В эти дни в данных *MODIS* область блика накрывает больше половины площади моря и на значительной ее части флаг 4 равен 1. Штриховыми линиями на рис. 1 показано расположение отсчетов с равным 0 углом сканирования (подспутниковые траектории). По отношению к этим линиям зона блика смещена к западу; при увеличении угла сканирования блик ослабевает и полностью отсутствует вблизи краев полосы обзора.

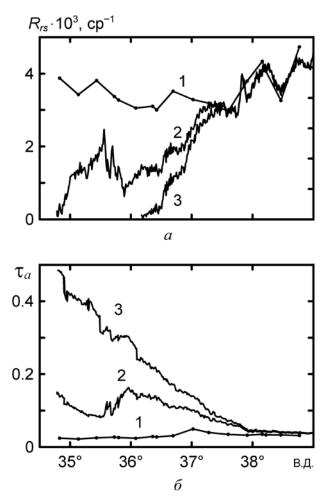


Рис. 1. Расположение участков Черного моря, в которых флаги 4 и 21 равны 1 по результатам съемок прибором *MODIS* 9.06.2003 г. (a) и 12.05.2007 г. (δ). Флагу 4 соответствует более густая штриховка

Анализ многих других подобных примеров, полученных прибором *MODIS* в разные годы, говорит о том, что показанные на рис. 1 пространственные распределения блика отражают обычные условия в Черном море для периода с мая по июль — август. Ранней весной и осенью размеры участков с отличными от 0 флагами 4 и 21 уменьшаются, а в зимние месяцы в наблюдениях Черного моря оба флага почти всегда равны 0. Приведенные на рис. 1 примеры интересны тем, что в эти дни значительная часть Черного моря была свободна от облачности и обеспечена результатами практически одновременных съемок приборами *MODIS* и *SeaWiFS*. Для рассматриваемых ниже тестовых участков моря разница по времени между данными двух приборов

не превышает 15 мин. При этом в данных *SeaWiFS* флаги 4 и 21 равны 0 на всей площади моря, за исключением небольшого участка на юго-западе, в котором для 9.06.2003 г. флаг 21 равен 1.

Особенности результатов для 12.05.2007 г. На рис. 2 показано сопоставление результатов определения коэффициента яркости морской поверхности $R_{\rm rs}(412)$ при $\lambda=412$ нм и оптической толщины аэрозольной составляющей атмосферы τ_a при $\lambda=\lambda_0$ ($\lambda_0=865$ нм для SeaWiFS, $\lambda_0=869$ нм для MODIS) на разрезе по 43,125° с. ш. по данным двух приборов. При построении этих графиков использованы попадающие в полосу шириной 1,1 км отсчеты SeaWiFS формата GAC с пространственным разрешением \sim 4 км и данные MODIS полного разрешения \sim 1 км.

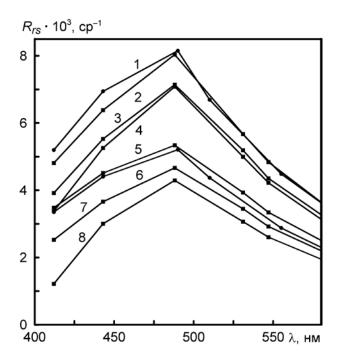
Рис. 2. Результаты определения $R_{\rm rs}(412)$ (*a*) и τ_a при $\lambda=\lambda_0$ (*б*) на разрезе по 43,125° с. ш. по данным двух приборов от 12.05.2007 г.: I-SeaWiFS; 2 и 3-MODIS (I и 2- стандартные продукты из архива *NASA*, 3- вариант расчетов без коррекции солнечного блика)

В дополнение к содержащимся в архиве *NASA* стандартным продуктам обработки на этом рисунке приведены еще и результаты специальных расче-МОРСКОЙ ГИДРОФИЗИЧЕСКИЙ ЖУРНАЛ № 3 2016 55

тов по программе SeaDAS [5] с отключением процедуры коррекции солнечного блика в показаниях прибора MODIS. При этом использована последняя версия SeaDAS 7.2, выпущенная в 2015 г.

В восточной части разреза блик отсутствует и наблюдается хорошее совпадение в показаниях двух приборов, тогда как в западной части эффекты блика в данных *MODIS* приводят к существенным расхождениям. Процедура коррекции блика лишь частично их снижает. В дальнейшем анализе используются только такие данные, в которых учтена эта коррекция.

Согласно информации *NCEP*, в этом районе моря 12.05.2007 г. скорость ветра была в пределах 2-6 м/с. Для всех представленных на рис. 2 данных *MODIS* флаг 21 равен 1. Флаг 4 равен 1 к западу от $36,1^{\circ}$ в. д.


В точке с координатами $43,125^{\circ}$ с. ш., $36,7^{\circ}$ в. д. *MODIS* имеет строго вертикальное направление визирования, в крайних точках графиков на рис. 2 углы сканирования одинаковы по абсолютной величине и составляют $\sim 16^{\circ}$. Отсчитываемый от вертикального направления угол наблюдения моря прибором SeaWiFS изменялся в интервале $22,3-38^{\circ}$.

Зенитный угол Солнца для данных каждого прибора почти не менялся и составлял $\approx 28-31^\circ$. Относительный азимутальный угол (по модулю) между направлениями из наблюдаемой точки на Солнце и в сторону спутника в крайней западной точке приведенных на рис. 2 графиков для данных *MODIS* и *SeaWiFS* равнялся 133 и 86° соответственно, а в крайней восточной точке – 40 и 44°. Анализируя приведенные здесь числовые значения углов, легко понять, каким образом геометрические условия наблюдений оказывают влияние на эффекты блика.

Данные SeaWiFS указывают на то, что в рассматриваемом районе моря 12.05.2007 г. реальные значения τ_a имели низкий уровень, а $R_{rs}(\lambda)$ почти не менялись, и поэтому можно сделать вывод, что проявления влияния блика на результаты обработки данных MODIS имеют очевидный однозначный характер.

Интерпретация результатов спектральных измерений. Проявления влияния солнечного блика на результаты определения спектральных зависимостей $R_{\rm rs}(\lambda)$ иллюстрируются показанными на рис. 3 примерами. Эти примеры специально выбраны для наглядного сопоставления результатов, полученных по измерениям двумя приборами в ситуациях без блика и с не слишком сильным бликом в данных *MODIS*.

В табл. 1 приведены соответствующие координаты, а также результаты определения τ_a при $\lambda=\lambda_0$ и концентрации хлорофилла a в воде. Эта величина здесь обозначена как C_{as} , для ее вычисления по спутниковым измерениям использован принятый в NASA традиционный способ [6]. Пространственное расположение отсчетов для 9.06.2003 г. схематически показано на рис. 4, а для 12.05.2007 г. его легко представить, судя по приведенным на рис. 2 графикам. Следует заметить, что рис. 4 отражает не реальные значения τ_a и $R_{rs}(412)$, а результаты их определения по данным MODIS, искаженные влиянием блика. На этих картах отчетливо прослеживается та же тенденция, что и на представленных на рис. 2 графиках — вследствие действия блика с ростом τ_a происходит снижение $R_{rs}(412)$.

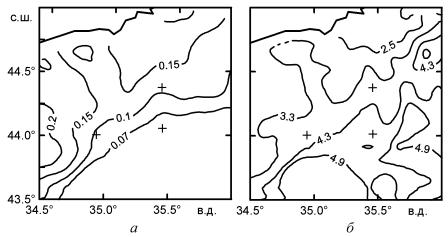


Рис. 3. Сопоставление спектральных зависимостей $R_{\rm rs}(\lambda)$, полученных по измерениям приборами *MODIS* и *SeaWiFS* в различных условиях 9.06.2003 г. (I-4) и 12.05.2007 г. (5-8). Номера кривых соответствуют вариантам в табл. 1

На рис. 3 и в табл. 1 варианты I-4 относятся к 9.06.2003 г., варианты 5-8- к 12.05.2007 г. Варианты I и 6 получены по данным SeaWiFS, а все остальные – по данным MODIS. Здесь для SeaWiFS показаны только два примера, так как для других отсчетов приводить результаты обработки данных SeaWiFS нет необходимости, поскольку они практически совпадают с вариантами I и G.

Таблица 1 **Характеристики тестовых данных**

Варианты	Дата	Координаты		Флаг 4	C_{as} , мг·м $^{-2}$	_
		°с. ш.	°в. д.	Флаг 4	C_{as} , MI·M	$ au_a$
1	9.06.2003 г.	44,015	35,450	0	0,51	0,051
2	9.06.2003 г.	44,015	35,460	0	0,53	0,047
3	9.06.2003 г.	44,006	34,944	1	0,54	0,098
4	9.06.2003 г.	44,393	35,461	0	0,52	0,118
5	12.05.2007 г.	43,125	38,455	0	0,57	0,039
6	12.05.2007 г.	43,128	38,466	0	0,52	0,033
7	12.05.2007 г.	43,128	37,037	0	0,57	0,102
8	12.05.2007 г.	43,122	35,137	1	0,54	0,101

Рис. 4. Расположение тестовых отсчетов (крестики) и пространственные распределения результатов определения τ_a при $\lambda=869$ нм (a) и $R_{\rm rs}(412)\cdot 10^3$ ср $^{-1}$ (δ) по данным *MODIS* от 9.06.2003 г.

Варианты I и 2 служат примерами измерений при отсутствии блика в данных двух приборов 9.06.2003 г.; аналогичным образом для 12.05.2007 г. такими примерами являются варианты 5 и 6. В этих примерах спектры $R_{\rm rs}(\lambda)$, полученные разными приборами, почти не отличаются, τ_a имеет низкий уровень и флаг 4 равен 0. При этом на равенство 1 флага 21 можно не обращать внимания.

Варианты 3 и 8 непосредственным образом демонстрируют эффекты, связанные с бликом. Для них по данным MODIS флаг 4 равен 1, τ_a имеет повышенный уровень. Из сопоставления этих примеров с вариантами без блика можно заключить, что действие блика приводит к снижению $R_{\rm rs}(\lambda)$ для всех длин волн.

Варианты 4 и 7 интересны тем, что для них по данным *MODIS* флаг 4 равен 0, и тем не менее они тоже подвержены существенным искажениям из-за действия блика. Это утверждение вытекает из сопоставления спектров $R_{rs}(\lambda)$ на рис. 3 и подтверждается повышенным уровнем τ_a . По-видимому, нулевые значения флага 4 в этих примерах обусловлены не совсем точным заданием необходимой для его определения скорости ветра.

Приведенные в табл. 1 значения τ_a могут служить в качестве характеристики интенсивности бликовых эффектов. Судя по данным SeaWiFS, реальная оптическая толщина аэрозоля в оба дня имела низкие значения, близкие к минимальным наблюдаемым в регионе Черного моря. Исходя из их сравнения с результатами определения τ_a по данным MODIS можно заключить, что в рассматриваемых примерах проявляется умеренный по силе блик. Заметим, что параметры аэрозоля играют важную роль, так как они используются при выполнении атмосферной коррекции спутниковых измерений, и поэтому от того, насколько точно они соответствуют реальной атмосфере, будет зависеть достоверность определения других параметров.

Для всех вариантов в табл. 1 значения C_{as} практически одинаковы, следовательно, результаты применения традиционного метода расчета содержания хлорофилла a оказались устойчивыми к действию блика.

Вместе с тем известно, что этот метод применительно к Черному морю часто приводит к большим ошибкам [7-10]. Более точные результаты могут быть получены при использовании таких комплексных методов, как GIOP [4]. В отличие от традиционного метода, в котором для расчетов содержания хлорофилла a в воде используются измерения по двум спектральным каналам спутникового прибора, в методе GIOP учитывается полный набор каналов. При этом обеспечивается контроль эффектов, связанных с независимой изменчивостью всех основных факторов, оказывающих влияние на оптические свойства воды.

Помимо содержания хлорофилла a методом GIOP определяются также спектральные зависимости показателей поглощения $a(\lambda)$ и обратного рассеяния $b_{\rm b}(\lambda)$ света в приповерхностном слое воды. Кроме того, вычисляются переменные составляющие, описывающие поглощение света фитопланктоном $a_{\rm ph}(\lambda)$ и растворенным в воде желтым веществом $a_{\rm dg}(\lambda)$ (в комбинации с поглощением детритом).

По своему смыслу GIOP близок к тем методам, которые ранее были использованы при анализе космических наблюдений Черного моря в работах [8, 11-13]. В последние годы этот метод реализован в применяемой в NASA операционной системе обработки спутниковых данных.

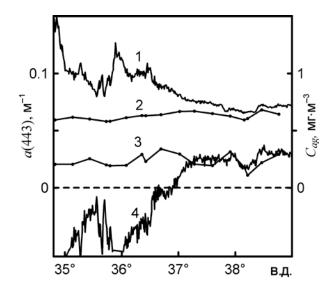

В табл. 2 приведены результаты определения этих параметров для показанных на рис. 3 спектров $R_{\rm rs}(\lambda)$. При подготовке этой таблицы были использованы материалы из архива *NASA* и расчеты по программе *SeaDAS*. Через C_{ag} обозначена концентрация хлорофилла a, вычисленная методом GIOP. Номера тестовых вариантов здесь совпадают с приведенными в табл. 1. На рис. 5 показаны эффекты блика на том же разрезе, что и на рис. 2.

Таблица 2 Результаты определения оптических параметров морской воды и концентрации хлорофилла *a* с использованием метода *GIOP*

Варианты	$a(443), \mathrm{m}^{-1}$	$b_{\rm b}(443),{\rm m}^{-1}$	$a_{\rm ph}(443), {\rm m}^{-1}$	$a_{\rm dg}(443), {\rm M}^{-1}$	C_{ag} , мг·м $^{-2}$
1	0,064	0,0087	0,012	0,045	0,22
2	0,068	0,0088	0,011	0,051	0,20
3	0,074	0,0081	0,008	0,060	0,14
4	0,076	0,0079	-0,001	0,071	-0,02
5	0,073	0,0064	0,016	0,050	0,29
6	0,068	0,0059	0,012	0,050	0,22
7	0,081	0,0058	0,006	0,069	0,12
8	0,102	0,0054	-0,029	0,124	-0,52

В ситуациях без блика (варианты 1, 2 и 5, 6) по данным двух приборов получены почти одинаковые результаты, которые вполне согласуются с обычными условиями в это время года в глубоководной части Черного моря

[11, 12, 14, 15]. Заметим, что в точках, для которых в табл. 2 не приведены результаты обработки данных SeaWiFS, эти результаты почти не отличаются от тех, которые получены для вариантов 1 и 6.

Рис. 5. Сопоставление результатов обработки данных приборов *MODIS* (1 и 4) и *SeaWiFS* (2 и 3) методом *GIOP* на разрезе по $43,125^{\circ}$ с. ш. Показатель поглощения a(443) - 1 и 2; концентрация хлорофилла a - 3 и 4

При определении составляющих поглощения света $a_{\rm ph}(\lambda)$, $a_{\rm dg}(\lambda)$ и концентрации хлорофилла a даже умеренный по силе блик приводит к большим ошибкам. Получаемые $a_{\rm ph}(\lambda)$ и C_{ag} заметно занижены и даже могут иметь лишенные смысла отрицательные значения. При этом ошибки в полном поглощении $a(\lambda)$ меньше, но тоже отчетливо выражены. Блик приводит к завышению $a(\lambda)$ и $a_{\rm dg}(\lambda)$. При использовании GIOP для получения надежных результатов необходимо иметь более точные исходные спектры $R_{\rm rs}(\lambda)$.

Ошибки определения показателя обратного рассеяния $b_b(\lambda)$ в рассмотренных примерах невелики, но можно утверждать, что основная тенденция заключается в кажущемся снижении $b_b(\lambda)$.

Заключение. Таким образом, рассмотренные примеры позволяют понять основные особенности проявления влияния солнечного блика на результаты обработки данных спутникового прибора MODIS с использованием комплексного метода GIOP. Благодаря специальному отбору тестовых измерений и сопоставлению показаний приборов SeaWiFS и MODIS обеспечена строгая однозначность интерпретации этих примеров.

Полученные результаты показывают важность бликовых эффектов, которые проявляются в данных не только прибора *MODIS*, но и других подобных приборов, лишенных механизма наклона плоскости сканирования. К их числу относится, например, работающий в космосе современный прибор *VIIRS*. При этом оказывается, что критерии браковки искажений, применяемые в настоящее время при операционной обработке спутниковых измерений в *NASA*,

не в полной мере обеспечивают их устранение. Поэтому итоговые результаты применения метода *GIOP*, содержащиеся в архиве *NASA* в формате *Level-3*, могут содержать серьезные ошибки.

Выполненный анализ будет полезным при разработке более эффективных способов интерпретации спутниковых наблюдений. Заметим, что ситуации с высокой интенсивностью блика легко выделяются и могут исключаться из практического использования, тогда как в случаях с не слишком сильными проявлениями блика возникает неопределенность, требующая более внимательного подхода. Приведенные примеры дают представление об основных тенденциях, которые характеризуют чувствительность результатов применения метода *GIOP* по отношению к вызываемым бликом умеренным по силе возмущениям.

Авторы выражают благодарность группе обработки спутниковой информации *NASA GSFC* (http://oceancolor.gsfc.nasa.gov/) за предоставленную возможность использования эмпирического материала.

СПИСОК ЛИТЕРАТУРЫ

- 1. *McClain C.R.*, *Feldman G.C.*, *Hooker S.B.* An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series // Deep-Sea Res. Part II. 2004. 51. P. 5 42.
- Why Ocean Colour? The Societal Benefits of Ocean-Colour Technology / Ed. T. Platt, N. Hoepffner, V. Stuart and C. Brown // Reports of the International Ocean-Colour Coordinating Group. – Canada, Dartmouth: IOCCG, 2008. – № 7. – 141 p.
- Wang M., Bailey S.W. Correction of sun glint contamination on the SeaWiFS ocean and atmospheric products // Appl. Opt. 2001. 40. P. 4790 4798.
- Werdell P.J., Franz B.A., Bailey S.W. et al. Generalized ocean color inversion model for retrieving marine inherent optical properties // Ibid. 2013. 52. P. 2019 2037.
- 5. *Baith K.*, *Lindsay R.*, *Fu G. et al.* SeaDAS: Data Analysis System developed for Ocean Color Satellite Sensors // Eos Trans. AGU. 2001. 82. P. 202.
- 6. *O'Reilly J.E., Maritorena S., Mitchell B.G. et al.* Ocean color chlorophyll algorithms for SeaWiFS // J. Geophys. Res. 1998. 103. P. 24937 24953.
- 7. *Буренков В.И., Копелевич О.В., Шеберстов С.В. и др.* Оптический мониторинг биологического и экологического состояния Черного моря // Комплексные исследования северо-восточной части Черного моря / Под ред. А.Г. Зацепина, М.Ф. Флинта. М.: Наука, 2002. С. 417 432.
- 8. Burenkov V.I., Kopelevich O.V., Sheberstov S. et al. Bio-optical characteristics of the Aegean Sea retrieved from satellite ocean color data // The Eastern Mediterranean as a Laboratory Basin for the Assessment of Contrasting Ecosystems / Ed. P. Malanotte-Rizzoli, V.N. Eremeev. Netherlands: Kluwer Academic Publishers, 1999. P. 313 326.
- 9. *Суетин В.С., Суслин В.В., Кучерявый А.А. и др.* Особенности интерпретации данных дистанционных оптических наблюдений Черного моря с помощью прибора SeaWiFS // Морской гидрофизический журнал. -2001. -№ 2. -C. 71-80.
- 10. *Oguz T., Ediger D.* Comparision of in situ and satellite-derived chlorophyll pigment concentrations, and impact of phytoplankton bloom on the suboxic layer structure in the western Black Sea during May June 2001 // Deep-Sea Res. Part II. 2006. <u>53</u>. P. 1923 1933.

- 11. Суетин В.С., Суслин В.В., Королев С.Н., Кучерявый А.А. Оценка изменчивости оптических свойств воды в Черном море летом 1998 года по данным спутникового прибора SeaWiFS // Морской гидрофизический журнал. − 2002. − № 6. − С. 44 − 54.
- 12. *Суетин В.С., Королев С.Н., Суслин В.В., Кучерявый А.А.* Сравнительный анализ методов определения оптических параметров Черного моря по данным спутниковых измерений // Там же. 2011. № 2. С. 33 42.
- 13. *Суетин В.С., Королев С.Н., Кучерявый А.А.* Использование спутниковых наблюдений для определения спектральных зависимостей оптических характеристик вод Черного моря // Там же. 2014. № 3. С. 77 86.
- Чурилова Т.Я., Берсенева Г.П., Георгиева Л.В. Изменчивость биооптических характеристик фитопланктона в Черном море // Океанология. 2004. 44, № 1. С. 11 27.
- Берсенева Г.П., Чурилова Т.Я., Георгиева Л.В. Сезонная изменчивость хлорофилла и биомассы фитопланктона в западной части Черного моря // Там же. 2004. 44, № 3. С. 389 398.

Sun glint manifestation at evaluating the Black Sea water optical parameters using satellite measurements

V.S. Suetin, S.N. Korolev, A.A. Kucheryaviy

Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russia

Typical examples of manifestations of a sun glint effect upon the results of evaluating the Black Sea water optical parameters using the satellite instrument *MODIS* data are considered. It is found that application of the complex technique *GIOP* induces (even at moderate sun glint) significant errors in evaluating the chlorophyll *a* concentration and the coefficients of light absorption by phytoplankton and yellow substance. At that, the glint-induced distortions in the spectra of the total absorption and backscattering coefficients are smaller, but distinctly pronounced.

Keywords: satellite remote sensing, Black Sea, sun glint, optical characteristics, chlorophyll a.