Воздействие мезомасштабной вихревой динамики на биопродуктивность морских экосистем (обзор)

А. С. Микаэлян1, А. Г. Зацепин1, А. А. Кубряков2,✉

1 Институт океанологии им. П. П. Ширшова РАН, Москва, Россия

2 Морской гидрофизический институт РАН, Севастополь, Россия

e-mail: arskubr@ya.ru

Аннотация

Рассмотрены разные типы мезомасштабной вихревой динамики с точки зрения их влияния на количество и таксономическую структуру планктона, в основном фитопланктона. Вихревые структуры всех видов, включая циклонические, антициклонические, линзовидные антициклонические и фронтальные вихри, а также дипольные структуры активно воздействуют на планктон. Рассмотрены теоретические схемы механизмов воздействия, которые проиллюстрированы примерами такого влияния на планктон Черного моря. Анализ отклика морского планктона на вихревую динамику и проведенный обзор литературы однозначно свидетельствуют о важной роли мезомасштабных вихрей в формировании биологической продуктивности в морях и океанах. Вихревая динамика всех без исключения типов способна обогащать планктоном как минимум часть занимаемой акватории. Так, циклонический вихрь создает в своем ядре подъем (куполообразный изгиб) изопикн как в термоклине, так и пикно-халоклине, поднимая нитроклин, что способствует повышению биопродуктивности. В свою очередь, в ядре антициклонического вихря имеет место опускание (прогиб) термоклина и пикно-халоклина, что негативно сказывается на биопродуктивности. При этом на периферии вихря происходит подъем изопикн, что, напротив, способствует увеличению первичной продукции. В отличие от обычного антициклона линзообразный вихрь создает подъем вод выше горизонта максимальной скорости, то есть часто в своей верхней части действует как циклон. Таким образом, в любом круговороте есть участки, где происходит подъем термоклина к поверхности и, следовательно, создаются предпосылки для увеличения биопродуктивности. Сильные ветры не только усиливают воздействие вихрей на биоту, но могут значительно менять характер этого воздействия. Существенно, что долгоживущие вихри меняют механизмы воздействия в зависимости от стадии эволюции. Наконец, вихревые структуры часто способствуют смене доминирующих видов фитопланктона, что может изменять существенным образом поток органического вещества на дно и влиять на глобальный цикл углерода.

Ключевые слова

синоптические вихри, фитопланктон, концентрация хлорофилла а, кокколитофориды, потоки биогенных элементов, горизонтальный обмен, вертикальный обмен, Черное море

Благодарности

Работа выполнена в рамках темы госзадания № 0149-2019-0010 и при финансовой поддержке гранта РНФ № 20-17-00167. Анализ воздействия вихревой динамики на вертикальную структуру фитопланктона выполнен при поддержке гранта РФФИ № 20-05-00068. Влияние субмезомасштабных вихрей на перенос шельфовых вод по спутниковым данным выполнен при поддержке гранта РФФИ 19-05-00479.

Для цитирования

Микаэлян А. С., Зацепин А. Г., Кубряков А. А. Воздействие мезомасштабной вихревой динамики на биопродуктивность морских экосистем (обзор) // Морской гидрофизический журнал. 2020. Т. 36, № 6. С. 646–675. EDN BOHNKV. doi:10.22449/0233-7584-2020-6-646-675

Mikaelyan, A.S., Zatsepin, A.G. and Kubryakov, A.A., 2020. Effect of Mesoscale Eddy Dynamics on Bioproductivity of the Marine Ecosystems (Review). Physical Oceanography, 27(6), pp. 590-618. doi:10.22449/1573-160X-2020-6-590-618

DOI

10.22449/0233-7584-2020-6-646-675

Список литературы

  1. Role of eddy pumping in enhancing primary production in the ocean / P. Falkowski [et al.] // Nature. 1991. Vol. 352, iss. 6330. P. 55–58. https://doi.org/10.1038/352055a0
  2. Influence of mesoscale eddies on new production in the Sargasso Sea / D. J. McGillicuddy [et al.] // Nature. 1998. Vol. 394, iss. 6690. P. 263266. https://doi.org/10.1038/28367
  3. McGillicuddy Jr. D. J. Mechanisms of Physical-Biological-Biogeochemical Interaction at the Oceanic Mesoscale // Annual Review of Marine Science. 2016. Vol. 8. P. 125–159. https://doi.org/10.1146/annurev-marine-010814-015606
  4. Oguz T., Macias D., Tintore J. Ageostrophic frontal processes controlling phytoplankton production in the Catalano-Balearic Sea (Western Mediterranean) // PLoS One. 2015. Vol. 10, iss. 6. e0129045. doi:10.1371/journal.pone.0129045
  5. Levy M., Klein P., Treguier A.-M. Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime // Journal of Marine Research. 2001. Vol. 59, no. 4. P. 535–565. URL: https://archimer.ifremer.fr/doc/00000/800/ (date of access: 05.10.2020).
  6. Mahadevan A. The Impact of Submesoscale Physics on Primary Productivity of Plankton // Annual Review of Marine Science. 2016. Vol. 8. P. 161184. https://doi.org/10.1146/annurev-marine-010814-015912
  7. Physical mechanisms of submesoscale eddies generation: evidences from laboratory modeling and satellite data in the Black Sea / A. Zatsepin [et al.] // Ocean Dynamics. 2019. Vol. 69, iss. 2. P. 253–266. https://doi.org/10.1007/s10236-018-1239-4
  8. Diatoms in the desert: Plankton community response to a mesoscale eddy in the subtropical North Pacific / S. L. Brown [et al.] // Deep Sea Research Part II: Topical Studies in Oceanography. 2008. Vol. 55, iss. 1013. P. 13211333. https://doi.org/10.1016/j.dsr2.2008.02.012
  9. Oguz T., Deshpande A. G., Malanotte-Rizzoli P. The role of mesoscale processes controlling biological variability in the Black Sea coastal waters: inferences from SeaWIFS-derived surface chlorophyll field // Continental Shelf Research. 2002. Vol. 22, iss. 10. P. 1477–1492. https://doi.org/10.1016/S0278-4343(02)00018-3
  10. Phytoplankton variability off the Western Australian Coast: Mesoscale eddies and their role in cross-shelf exchange / T. S. Moore [et al.] // Deep Sea Research Part II: Topical Studies in Oceanography. 2007. Vol. 54, iss. 810. P. 943960. https://doi.org/10.1016/j.dsr2.2007.02.006
  11. Long-term variations of the Black Sea dynamics and their impact on the marine ecosystem / A. A. Kubryakov [et al.] // Journal of Marine Systems. 2016. Vol. 163. P. 80–94. https://doi.org/10.1016/j.jmarsys.2016.06.006
  12. Lima I. D., Olson D. B., Doney S. C. Biological response to frontal dynamics and mesoscale variability in oligotrophic environments: Biological production and community structure // Journal of Geophysical Research: Oceans. 2002. Vol. 107, iss. C8. 3111. https://doi.org/10.1029/2000JC000393
  13. Goldman J. C., McGillicuddy Jr. D. J. Effect of large marine diatoms growing at low light on episodic new production // Limnology and Oceanography. Vol. 48, iss. 3. P. 1176–1182. https://doi.org/10.4319/lo.2003.48.3.1176
  14. Variability in the spatio-temporal distribution and size–structure of phytoplankton across an upwelling area in the NW-Alboran Sea, (W-Mediterranean) / A. Reul [et al.] // Continental Shelf Research. 2005. Vol. 25, iss. 5–6. P. 589–608. https://doi.org/10.1016/j.csr.2004.09.016
  15. Hanson C. E., Pattiaratchi C. B., Waite A. M. Sporadic upwelling on a downwelling coast: Phytoplankton responses to spatially variable nutrient dynamics off the Gascoyne region of Western Australia // Continental Shelf Research. 2005. Vol. 25, iss. 12–13. P. 1561–1582. https://doi.org/10.1016/j.csr.2005.04.003
  16. Eddies enhance biological production in the Weddell-Scotia Confluence of the Southern Ocean / M. Kahru [et al.] // Geophysical Research Letters. 2007. Vol. 34, iss. 14. L14603. https://doi.org/10.1029/2007GL030430
  17. The impact of physical processes on taxonomic composition, distribution and growth of phytoplankton in the open Black Sea / A. S. Mikaelyan [et al.] // Journal of Marine Systems. 2020. Vol. 208. 103368. https://doi.org/10.1016/j.jmarsys.2020.103368
  18. Распределение мезозооплантона в связи с особенностями циркуляции в северо-восточной части Черного моря // Е. Г. Арашкевич [и др.] // Комплексные исследования северо-восточной части Черного моря / Отв. ред. А. Г. Зацепин, М. В. Флинт. М. : Наука, 2002. С. 257–272.
  19. Влияние мезомасштабной динамики на фитопланктонные сообщества Черного Моря / А. С. Микаэлян [и др.] // Комплексные исследования северо-восточной части Черного моря / Отв. ред. А. Г. Зацепин, М. В. Флинт. М. : Наука, 2002. С. 248–257.
  20. Phytoplankton diversity and community structure affected by oceanic dispersal and mesoscale turbulence / M. Lévy [et al.] // Limnology and Oceanography: Fluids and Environments. 2014. Vol. 4, iss. 1. P. 67–84. https://doi.org/10.1215/21573689-2768549
  21. Primary production of the biosphere: integrating terrestrial and oceanic components / C. B. Field [et al.] // Science. 1998. Vol. 281, iss. 5374. P. 237–240. doi:10.1126/science.281.5374.237
  22. Siegel D. A., McGillicuddy Jr. D. J., Fields E. A. Mesoscale eddies, satellite altimetry, and new production in the Sargasso Sea // Journal of Geophysical Research: Oceans. 1999. Vol. 104, iss. C6. P. 1335913379. https://doi.org/10.1029/1999JC900051
  23. Латун В. С. Роль антициклонических круговоротов во внутрисезонной эволюции термохалинной структуры и геострофической циркуляции вод // Исследование и моделирование гидрофизических процессов в Черном море / [А. В. Алексеев и др.]; Под ред. С. П. Левикова. М. : Гидрометеоиздат : Моск. отд-ние, 1989. Раздел 2.1. С. 40–49.
  24. Особенности динамики вод и гидрологической структуры северо-восточной части Черного моря осенью 1993 г. / В. Г. Кривошея [и др.] // Океанология. 1997. Т. 37, № 3. С. 352–358.
  25. Вихревые структуры и горизонтальный водообмен в Черном море / А. Г. Зацепин [и др.] // Комплексные исследования северо-восточной части Черного моря / Отв. ред. А. Г. Зацепин, М. В. Флинт. М. : Наука, 2002. С. 55–81.
  26. Seasonal, interannual, and mesoscale variability of the Black Sea upper layer circulation derived from altimeter data / G. Korotaev [et al.] // Journal of Geophysical Research: Oceans. 2003. Vol. 108, iss. C4. 3122. https://doi.org/10.1029/2002JC001508
  27. Кубряков A. A., Станичный С. В. Синоптические вихри в Черном море по данным спутниковой альтиметрии // Океанология. 2015. Т. 55, № 1. С. 65–77. doi:10.7868/S0030157415010104
  28. Kubryakov A. A., Stanichny S. V., Volkov D. L. Quantifying the impact of basin dynamics on the regional sea level rise in the Black Sea // Ocean Science. 2017. Vol. 13, iss. 3. P. 443–452. https://doi.org/10.5194/os-13-443-2017
  29. Anticyclonic eddies in the northwestern Black Sea / A. I. Ginzburg [et al.] // Journal of Marine Systems. 2002. Vol. 32, iss. 13. P. 91106. https://doi.org/10.1016/S0924-7963(02)00035-0
  30. Shapiro G. I., Stanichny S. V., Stanychna R. R. Anatomy of shelf–deep sea exchanges by a mesoscale eddy in the North West Black Sea as derived from remotely sensed data // Remote Sensing of Environment. 2010. Vol. 114, iss. 4. P. 867–875. https://doi.org/10.1016/j.rse.2009.11.020
  31. Karimova S. Spiral eddies in the Baltic, Black and Caspian seas as seen by satellite radar data // Advances in Space Research. 2012. Vol. 50, iss. 8. P. 11071124. https://doi.org/10.1016/j.asr.2011.10.027
  32. Thermohaline structure, transport and evolution of the Black Sea eddies from hydrological and satellite data / A. A. Kubryakov [et al.] // Progress in Oceanography. 2018. Vol. 167. P. 44–63. https://doi.org/10.1016/j.pocean.2018.07.007
  33. Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine / W. M. Balch [et al.] // Limnology and Oceanography. 1991. Vol. 36, iss. 4. P. 629643. https://doi.org/10.4319/lo.1991.36.4.0629
  34. Cokacar T., Kubilay N., Oguz T. Structure of Emiliania huxleyi blooms in the Black Sea surface waters as detected by SeaWIFS imagery // Geophysical Research Letters. 2001. Vol. 28, iss. 24. P. 46074610. https://doi.org/10.1029/2001GL013770
  35. Kubryakov A. A., Stanichny S. V. Mean dynamic topography of the Black Sea, computed from altimetry, drifter measurements and hydrology data // Ocean Science. 2011. Vol. 7, iss. 6. P. 745753. https://doi.org/10.5194/os-7-745-2011
  36. Изменчивость гидрофизических полей Черного моря / [А. С. Блатов и др.]; Под ред. Б. А. Нелепо. Л. : Гидрометеоиздат, 1984. 240 с.
  37. Циркуляция вод и характеристики разномасштабных течений в верхнем слое Черного моря по дрифтерным данным / В. М. Журбас [и др.] // Океанология. 2004. Т. 44, № 1. С. 34–48.
  38. Observations of Black Sea mesoscale eddies and associated horizontal mixing / A. G. Zatsepin [et al.] // Journal of Geophysical Research: Oceans. 2003. Vol. 108, iss. C8. 3246. https://doi.org/10.1029/2002JC001390
  39. Kubryakov A. A., Stanichny S. V. Seasonal and interannual variability of the Black Sea eddies and its dependence on characteristics of the large-scale circulation // Deep Sea Research Part I: Oceanographic Research Papers. 2015. Vol. 97. P. 80–91. https://doi.org/10.1016/j.dsr.2014.12.002
  40. Stanev E. V. On the mechanisms of the Black Sea circulation // Earth–Science Reviews. 1990. Vol. 28, iss. 4. P. 285–319. https://doi.org/10.1016/0012-8252(90)90052-W
  41. Circulation in the surface and intermediate layers of the Black Sea / T. Oguz [et al.] // Deep Sea Research Part I: Oceanographic Research Papers. 1993. Vol. 40, iss. 8. P. 1597–1612. https://doi.org/10.1016/0967-0637(93)90018-X
  42. Mesoscale circulation and thermohaline structure of the Black Sea observed during HydroBlack '91 / T. Oguz [et al.] // Deep Sea Research Part I: Oceanographic Research Papers. 1994. Vol. 41, iss. 4. P. 603–628. https://doi.org/10.1016/0967-0637(94)90045-0
  43. Korotaev G., Oguz T., Riser S. Intermediate and deep currents of the Black Sea obtained from autonomous profiling floats // Deep Sea Research Part II: Topical Studies in Oceanography. 2006. Vol. 53, iss. 17–19. P. 1901–1910. https://doi.org/10.1016/j.dsr2.2006.04.017
  44. Филюшкин Б. Н., Лебедев К. В., Кожелупова Н. Г. Обнаружение промежуточных средиземноморских вод в Атлантическом океане по наблюдениям поплавков Арго // Океанология. 2017. Т. 57, № 6. С. 847–857.
  45. Worthington L. V. Genesis and evolution of water masses // Causes of Climatic Change / J. M. Mitchell (ed.). Boston, MA : American Meteorological Society, 1968. P. 63–67. (Meteorological Monographs; Vol. 8).
  46. Sweeney E. N., McGillicuddy Jr. D. J., Buesseler K. O. Biogeochemical impacts due to mesoscale eddy activity in the Sargasso Sea as measured at the Bermuda Atlantic Time-series Study (BATS) // Deep Sea Research Part II: Topical Studies in Oceanography. 2003. Vol. 50, iss. 22–26. P. 3017–3039. https://doi.org/10.1016/j.dsr2.2003.07.008
  47. Effect of bottom slope and wind on the near-shore current in a rotating stratified fluid: Laboratory modeling for the Black Sea / A. G. Zatsepin [et al.] // Oceanology. 2005. Vol. 45, suppl. 1. P. S13-S26.
  48. Гинзбург А. И. Процессы горизонтального обмена в приповерхностном слое Черного моря // Исследование Земли из космоса. 1994. № 2. С. 75–83.
  49. Отделение прибрежных антициклонических вихрей от Кавказского берега и их трансформации в вихри открытого моря / А. И. Гинзбург [и др.] // Комплексные исследования северо-восточной части Черного моря / Отв. ред. А. Г. Зацепин, М. В. Флинт. М. : Наука, 2002. С. 82–91.
  50. Бассейновая циркуляция и мезомасштабная динамика Черного моря под ветровым воздействием / А. Г. Зацепин [и др.] // Современные проблемы динамики океана и атмосферы : сборник статей, посвященный 100-летию со дня рождения проф. П. С. Линейкина / Под ред. А. В. Фролова, Ю. Д. Реснянского. М. : Триада, 2010. С. 347–368.
  51. Eddy effects on surface chlorophyll in the northern South China Sea: mechanism investigation and temporal variability analysis / Q. He [et al.] // Deep Sea Research Part I: Oceanographic Research Papers. 2016. Vol. 112. P. 25–36. http://dx.doi.org/10.1016/j.dsr.2016.03.004
  52. Effects of cold eddy on phytoplankton production and assemblages in Luzon strait bordering the South China Sea / Y.-L. L. Chen [et al.] // Journal of Oceanography. 2007. Vol. 63, iss. 4. P. 671–683. https://doi.org/10.1007/s10872-007-0059-9
  53. Allen C. B., Kanda J., Laws E. A. New production and photosynthetic rates within and outside a cyclonic mesoscale eddy in the North Pacific subtropical gyre // Deep Sea Research Part I: Oceanographic Research Papers. 1996. Vol. 43, iss. 6. P. 917–936. https://doi.org/10.1016/0967-0637(96)00022-2
  54. Impact of a cyclonic eddy on phytoplankton community structure and photosynthetic competency in the subtropical North Pacific Ocean / R. D. Vaillancourt [et al.] // Deep Sea Research Part I: Oceanographic Research Papers. 2003. Vol. 50, iss. 7. P. 829–847. https://doi.org/10.1016/S0967-0637(03)00059-1
  55. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms / D. J. McGillicuddy Jr. [et al.] // Science. 2007. Vol. 316, iss. 5827. P. 1021–1026. doi:10.1126/science.1136256
  56. Mesoscale Eddies Drive Increased Silica Export in the Subtropical Pacific Ocean / C. R. Benitez-Nelson [et al.] // Science. 2007. Vol. 316, iss. 5827. P. 1017–1021. doi:10.1126/science.1136221
  57. Eddy-induced oscillations of the pycnocline affect the floristic composition and depth distribution of phytoplankton in the subtropical Pacific / M. Olaizola [et al.] // Marine Biology. 1993. Vol. 116, iss. 4. P. 533–542. https://doi.org/10.1007/BF00355471
  58. Bibby T. S., Moore C. M. Silicate: nitrate ratios of upwelled waters control the phytoplankton community sustained by mesoscale eddies in sub-tropical North Atlantic and Pacific // Biogeosciences. 2011. Vol. 8, iss. 3. P. 657–666. https://doi.org/10.5194/bg-8-657-2011
  59. Sur H. I., Ilyin Yu. P. Evolution of satellite derived mesoscale thermal patterns in the Black Sea // Progress in Oceanography. 1997. Vol. 39, iss. 2. P. 109–151. https://doi.org/10.1016/S0079-6611(97)00009-8
  60. Kubryakov A. A., Zatsepin A. G., Stanichny S. V. Anomalous summer-autumn phytoplankton bloom in 2015 in the Black Sea caused by several strong wind events // Journal of Marine Systems. 2019. Vol. 194. P. 11–24. https://doi.org/10.1016/j.jmarsys.2019.02.004
  61. Influence on phytoplankton of different developmental stages of mesoscale eddies off eastern Australia / F. Liu [et al.] // Journal of Sea Research. 2018. Vol. 137. P. 1–8. https://doi.org/10.1016/j.seares.2018.03.004
  62. Phytoplankton and pigment distributions in an anticyclonic slope water oceanic eddy (SWODDY) in the southern Bay of Biscay / F. Rodríguez [et al.] // Marine Biology. 2003. Vol. 143, iss. 5. P. 995–1011. https://doi.org/10.1007/s00227-003-1129-1
  63. Jeffrey S. W., Hallegraeff G. M. Studies of phytoplankton species and photosynthetic pigments in a warm core eddy of the East Australian Current. I. Summer populations // Marine Ecology Progress Series. 1980. Vol. 3, no. 4. P. 285–294. doi:10.3354/meps003285
  64. On the nature of short-period oscillations of the main Black Sea pycnocline, submesoscale eddies, and response of the marine environment to the catastrophic shower of 2012 / A. G. Zatsepin [et al.] // Izvestiya, Atmospheric and Oceanic Physics. 2013. Vol. 49, iss. 6. P. 659–673. https://doi.org/10.1134/S0001433813060145
  65. Multi-sensor satellite and in situ measurements of a warm core ocean eddy south of the Brazil–Malvinas Confluence region / R. B. de Souza [et al.] // Remote Sensing of Environment. 2006. Vol. 100, iss. 1. P. 5266. https://doi.org/10.1016/j.rse.2005.09.018
  66. Mesoscale eddies: hotspots of prokaryotic activity and differential community structure in the ocean / F. Baltar [et al.] // The ISME Journal. 2010. Vol. 4, iss. 8. P. 975–988. https://doi.org/10.1038/ismej.2010.33
  67. Paterson H. L., Knott B., Waite A. M. Microzooplankton community structure and grazing on phytoplankton, in an eddy pair in the Indian Ocean off Western Australia // Deep Sea Research Part II: Topical Studies in Oceanography. 2007. Vol. 54, iss. 8–10. P. 1076–1093. https://doi.org/10.1016/j.dsr2.2006.12.011
  68. Stirring of the northeast Atlantic spring bloom: A Lagrangian analysis based on multisatellite data / Y. Lehahn [et al.] // Journal of Geophysical Research: Oceans. 2007. Vol. 112, iss. C8. C08005. https://doi.org/10.1029/2006JC003927
  69. Variability of the Cyprus warm core Eddy during the CYCLOPS project / G. Zodiatis [et al.] // Deep Sea Research Part II: Topical Studies in Oceanography. 2005. Vol. 52, iss. 2223. P. 2897–2910. https://doi.org/10.1016/j.dsr2.2005.08.020
  70. Srokosz M. A., Martin A. P., Fasham M. J. R. On the role of biological dynamics in plankton patchiness at the mesoscale: An example from the eastern North Atlantic Ocean // Journal of Marine Research. 2003. Vol. 61, no. 4. P. 517–537. https://doi.org/10.1357/002224003322384915
  71. Phytoplankton community at warm eddies in the northern South China Sea in winter 2003/2004 / B. Huang [et al.] // Deep Sea Research Part II: Topical Studies in Oceanography. 2010. Vol. 57, iss. 19–20. P. 1792–1798. http://dx.doi.org/10.1016/j.dsr2.2010.04.005
  72. Batten S. D., Crawford W. R. The influence of coastal origin eddies on oceanic plankton distributions in the eastern Gulf of Alaska // Deep Sea Research Part II: Topical Studies in Oceanography. 2005. Vol. 52, iss. 7–8. P. 991–1009. https://doi.org/10.1016/j.dsr2.2005.02.009
  73. Mackas D. L., Galbraith M. D. Zooplankton distribution and dynamics in a North Pacific eddy of coastal origin: I. Transport and loss of continental margin species // Journal of Oceanography. 2002. Vol. 58, iss. 5. P. 725–738. https://doi.org/10.1023/A:1022802625242
  74. Изменчивость толщины перемешанного слоя в Черном море и ее связь с динамикой вод и атмосферным воздействием / А. А. Кубряков [и др.] // Морской гидрофизический журнал. 2019. Т. 35, № 5. С. 449–468. doi:10.22449/0233-7584-2019-5-449-468
  75. Sverdrup H. U. On conditions for the vernal blooming of phytoplankton // ICES Journal of Marine Science. 1953. Vol. 18, iss. 3. P. 287–295. https://doi.org/10.1093/icesjms/18.3.287
  76. Gould Jr. R. W., Fryxell G. A. Phytoplankton species composition and abundance in a Gulf Stream warm core ring. I. Changes over a five month period // Journal of Marine Research. 1988. Vol. 46, no. 2. P. 367–398. https://doi.org/10.1357/002224088785113649
  77. Martin A. P., Richards K. J. Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy // Deep Sea Research Part II: Topical Studies in Oceanography. 2001. Vol. 48, iss. 4–5. P. 757–773. https://doi.org/10.1016/S0967-0645(00)00096-5
  78. Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies / P. Gaube [et al.] // Journal of Geophysical Research: Oceans. 2013. Vol. 118, iss. 12. P. 6349–6370. http://dx.doi.org/10.1002/2013jc009027
  79. Demyshev S. G., Dymova O. A. Numerical analysis of the Black Sea currents and mesoscale eddies in 2006 and 2011 // Ocean Dynamics. 2018. Vol. 68, iss. 10. P. 13351352. https://doi.org/10.1007/s10236-018-1200-6
  80. Kostianoy A. G., Zatsepin A. G. Laboratory experiments with baroclinic vortices in a rotating fluid // Mesoscale/Synoptic Coherent structures in Geophysical Turbulence / Edited by J. C. J. Nihoul, B. M. Jamart. Amsterdam : Elsevier, 1989. P. 691700. (Elsevier oceanography series ; Vol. 50). https://doi.org/10.1016/S0422-9894(08)70215-0
  81. Комплексный спутниковый мониторинг морей России / О. Ю. Лаврова [и др.]. М. : ИКИ РАН, 2011. 480 с. URL: http://www.iki.rssi.ru/books/2011monitoring.pdf (дата обращения: 01.10.2020).
  82. Mityagina M. I., Lavrova O. Y., Karimova S. S. Multi-sensor survey of seasonal variability in coastal eddy and internal wave signatures in the north-eastern Black Sea // International Journal of Remote Sensing. 2010. Vol. 31, iss. 1718. P. 47794790. https://doi.org/10.1080/01431161.2010.485151
  83. Динамика антициклонов в Черном море по данным спутниковых альтиметрических измерений / Г. К. Коротаев [и др.] // Исследование Земли из Космоса. 2002. № 6. С. 60–69.
  84. Кубряков A. A., Станичный С. В. Динамика Батумского антициклона по спутниковым данным // Морской гидрофизический журнал. 2015. № 2. С. 6778. doi:10.22449/0233-7584-2015-2-67-78
  85. Гидрофизические и гидрохимические характеристики морских акваторий у устьев малых рек российского побережья Черного моря / П. О. Завьялов [и др.] // Океанология. 2014. Т. 54, № 3. С. 293308. doi:10.7868/S0030157414030150
  86. Paasche E. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions // Phycologia. 2001. Vol. 40, iss. 6. P. 503529. https://doi.org/10.2216/i0031-8884-40-6-503.1
  87. The impact of mesoscale eddies on the phytoplankton community in the South Atlantic Ocean: HPLC-CHEMTAX approach / A. D. C. D. O. Carvalho [et al.] // Marine Environmental Research. 2019. Vol. 144. P. 154165. https://doi.org/10.1016/j.marenvres.2018.12.003

Скачать статью в PDF-формате