Бризовая циркуляция: теория и двумерное моделирование (обзор)

М. В. Шокуров, Н. Ю. Краевская

Морской гидрофизический институт РАН, Севастополь, Россия

e-mail: krayevskaja_n@mhi-ras.ru

Аннотация

Цель. Бризовая циркуляция представляет собой распространенное мезомасштабное явление вблизи берегов водоемов. Однако на данный момент опубликовано небольшое количество обзорных работ на эту тему. Поэтому целью данной работы стало дополнение существующих обзоров по бризу путем обобщения имеющихся сведений о влиянии на бризовую циркуляцию интенсивности нагрева воздуха вблизи поверхности суши, стратификации атмосферы, синоптического фонового ветра и силы Кориолиса.

Методы и результаты. Представлен обзор результатов работ, в которых используются теоретические методы исследования, а именно линейная теория и двумерное численное моделирование. Вначале бризовая циркуляция рассматривается в рамках линейной теории. Затем представлено техническое описание двумерных моделей и рассмотрены особенности бриза, полученные с их использованием. На основе обзора опубликованных работ рассмотрено влияние на бризовую циркуляцию четырех основных факторов: потока тепла, стратификации, фонового ветра и силы Кориолиса.

Выводы. В рамках линейной теории бризовая циркуляция представляет собой внутреннюю инерционно-гравитационную волну суточного периода. Влияние фонового синоптического ветра на линейную бризовую циркуляцию в зависимости от однородности его профиля по вертикали приводит к асимметрии циркуляции относительно берега и ограничению бриза по высоте. Важной чертой бризовой циркуляции в нелинейном режиме, полученной с использованием численного моделирования, является формирование распространяющегося по поверхности гравитационного течения. В нелинейном режиме существует достаточно четкая зависимость скорости распространения фронта гравитационного течения от его высоты. Основным проявлением влияния фонового ветра на гравитационное течение является изменение высоты течения, вследствие чего формируется стационарное или быстро распространяющееся течение. Как в рамках линейной теории, так и в нелинейном режиме вследствие влияния силы Кориолиса формируется вдольбереговая компонента скорости, что приводит к уменьшению перпендикулярной к береговой черте компоненты скорости.

Ключевые слова

бризовая циркуляция, линейная теория, численное моделирование, внутренние гравитационные волны

Благодарности

Работа выполнена в рамках темы государственного задания ФГБУН ФИЦ МГИ FNNN-2024-0014.

Для цитирования

Шокуров М. В., Краевская Н. Ю. Бризовая циркуляция: теория и двумерное моделирование (обзор) // Морской гидрофизический журнал. 2024. Т. 40, № 4. С. 493–513. EDN VUWUEJ.

Shokurov, M.V. and Kraevskaya, N.Yu., 2024. Sea Breeze Circulation: Theory and Two-Dimensional Simulation (Review). Physical Oceanography, 31(4), pp. 447-466.

Список литературы

  1. Anthes R. A. The Height of the Planetary Boundary Layer and the Production of Circulation in a Sea Breeze Model // Journal of the Atmospheric Sciences. 1978. Vol. 35, iss. 7. P. 1231–1239. https://doi.org/10.1175/1520-0469(1978)035%3C1231:THOTPB%3E2.0.CO;2
  2. Feliks Y. An Analytical Model of the Diurnal Oscillation of the Inversion Base due to the Sea Breeze // Journal of the Atmospheric Sciences. 1994. Vol. 51, iss. 7. P. 991–998. https://doi.org/10.1175/1520-0469(1994)051%3C0991:AAMOTD%3E2.0.CO;2
  3. Numerical Simulations of an Observed Gravity Current and Gravity Waves in an Environment Characterized by Complex Stratification and Shear / Y. Jin [et al.] // Journal of the Atmospheric Sciences. 1996. Vol. 53, iss. 23. P. 3570–3588. https://doi.org/10.1175/1520-0469(1996)053%3C3570:NSOAOG%3E2.0.CO;2
  4. Tijm A. B. C., Holtslag A. A. M., van Delden A. J. Observations and Modeling of the Sea Breeze with the Return Current // Monthly Weather Review. 1999. Vol. 127, iss. 5. P. 625–640. https://doi.org/10.1175/1520-0493(1999)127%3C0625:OAMOTS%3E2.0.CO;2
  5. Yan H., Anthes R. A. The Effect of Variations in Surface Moisture on Mesoscale Circulation // Monthly Weather Review. 1988. Vol. 116, iss. 1. P. 192–208. https://doi.org/10.1175/1520-0493(1988)116%3C0192:TEOVIS%3E2.0.CO;2
  6. Bryan G. H., Rotunno R. The Optimal State for Gravity Currents in Shear // Journal of the Atmospheric Sciences. 2014. Vol. 71, iss. 1. P. 448–468. https://doi.org/10.1175/JAS-D-13-0156.1
  7. Du Y., Rotunno R. Diurnal Cycle of Rainfall and Winds near the South Coast of China // Journal of the Atmospheric Sciences. 2018. Vol. 75, iss. 6. Р. 2065–2082. https://doi.org/10.1175/JAS-D-17-0397.1
  8. The effect of coastal upwelling on the sea-breeze circulation at Cabo Frio, Brazil: a numerical experiment / S. H. Franchito [et al.] // Annales Geophysicae. 1998. Vol. 16. P. 866–881. https://doi.org/10.1007/s00585-998-0866-3
  9. Dailey P. S., Fovell R. G. Numerical Simulation of the Interaction between the Sea-Breeze Front and Horizontal Convective Rolls. Part I: Offshore Ambient Flow // Monthly Weather Review. 1999. Vol. 127, iss. 5. P. 858–878. https://doi.org/10.1175/1520-0493(1999)127%3C0858:NSOTIB%3E2.0.CO;2
  10. Gilliam R. C., Raman S., Niyogi D. D. S. Observational and Numerical Study on the Influence of Large-Scale Flow Direction and Coastline Shape on Sea-Breeze Evolution // Boundary-Layer Meteorology. 2004. Vol. 111. P. 275–300. https://doi.org/10.1023/B:BOUN.0000016494.99539.5a
  11. Chen X., Zhang F., Zhao K. Diurnal Variations of the Land–Sea Breeze and Its Related Precipitation over South China // Journal of the Atmospheric Sciences. 2016. Vol. 73, iss. 12. P. 4793–4815. https://doi.org/10.1175/JAS-D-16-0106.1
  12. Effect of Sea Breeze on Air Pollution in the Greater Athens Area. Part I: Numerical Simulations and Field Observations / A. Clappier [et al.] // Journal of Applied Meteorology and Climatology. 2000. Vol. 39, iss. 4. P. 546–562. https://doi.org/10.1175/1520-0450(2000)039%3C0546:EOSBOA%3E2.0.CO;2
  13. Impact of the Rhône and Durance valleys on sea-breeze circulation in the Marseille area / S. Bastin [et al.] // Atmospheric Research. 2005. Vol. 74, iss. 1–4. P. 303–328. https://doi.org/10.1016/j.atmosres.2004.04.014
  14. Modelling Local Sea-Breeze Flow and Associated Dispersion Patterns Over a Coastal Area in North-East Spain: A Case Study / M. R. Soler [et al.] // Boundary-Layer Meteorology. 2011. Vol. 140. P. 37–56. https://doi.org/10.1007/s10546-011-9599-z
  15. Sea breeze: Structure, forecasting, and impacts / S. T. K. Miller [et al.] // Reviews of Geophysics. 2003. Vol. 41, iss. 3. 1011. https://doi.org/10.1029/2003RG000124
  16. Crosman E. T., Horel J. D. Sea and Lake Breezes: A Review of Numerical Studies // Boundary-Layer Meteorology. 2010. Vol. 137. P. 1–29. https://doi.org/10.1007/s10546-010-9517-9
  17. Pearson R. A. Properties of the Sea Breeze Front as Shown by a Numerical Model // Journal of the Atmospheric Sciences. 1973. Vol. 30, iss. 6. P. 1050–1060. https://doi.org/10.1175/1520-0469(1973)030%3C1050:POTSBF%3E2.0.CO;2
  18. Robinson F. J., Patterson M. D., Sherwood S. C. A Numerical Modeling Study of the Propagation of Idealized Sea-Breeze Density Currents // Journal of the Atmospheric Sciences. 2013. Vol. 70, iss 2. P. 653–668. https://doi.org/10.1175/JAS-D-12-0113.1
  19. Estoque M. A. The Sea Breeze as a Function of the Prevailing Synoptic Situation // Journal of the Atmospheric Sciences. 1962. Vol. 19, iss. 3. P. 244–250. https://doi.org/10.1175/1520-0469(1962)019%3C0244:TSBAAF%3E2.0.CO;2
  20. Liu C., Moncrieff M. W. A Numerical Study of the Effects of Ambient Flow and Shear on Density Currents // Monthly Weather Review. 1996. Vol. 124, iss. 10. P. 2282–2303. https://doi.org/10.1175/1520-0493(1996)124%3C2282:ANSOTE%3E2.0.CO;2
  21. Arritt R. W. Effects of the Large-Scale Flow on Characteristic Features of the Sea Breeze // Journal of Applied Meteorology and Climatology. 1993. Vol. 32, iss. 1. P. 116–125. https://doi.org/10.1175/1520-0450(1993)032%3C0116:EOTLSF%3E2.0.CO;2
  22. Haurwitz B. Comments on the Sea-Breeze Circulation // Journal of the Atmospheric Sciences. 1947. Vol. 4, iss. 1. P. 1–8. https://doi.org/10.1175/1520-0469(1947)004%3C0001:COTSBC%3E2.0.CO;2
  23. Yan H., Anthes R. A. The Effect of Latitude on the Sea Breeze // Monthly Weather Review. 1987. Vol. 115, iss. 5. P. 936–956. https://doi.org/10.1175/1520-0493(1987)115%3C0936:TEOLOT%3E2.0.CO;2
  24. Walsh J. E. Sea Breeze Theory and Applications // Journal of the Atmospheric Sciences. 1974. Vol. 31, iss. 8. P. 2012–2026. https://doi.org/10.1175/1520-0469(1974)031%3C2012:SBTAA%3E2.0.CO;2
  25. Kimura R., Eguchi T. On Dynamical Processes of Sea- and Land-Breeze Circulation // Journal of the Meteorological Society of Japan. Ser. II. 1978. Vol. 56, iss. 2. P. 67–85. https://doi.org/10.2151/jmsj1965.56.2_67
  26. Porson A., Steyn D. G., Schayes G. Sea-breeze scaling from numerical model simulations, Part I: Pure sea breezes // Boundary-Layer Meteorology. 2007. Vol. 122. P. 17–29. https://doi.org/10.1007/s10546-006-9090-4
  27. Dalu G. A., Pielke R. A. An Analytical Study of the Sea Breeze // Journal of the Atmospheric Sciences. 1989. Vol. 46, iss. 12. P. 1815–1825. https://doi.org/10.1175/1520-0469(1989)046%3C1815:AASOTS%3E2.0.CO;2
  28. Estoque M. A. A theoretical investigation of the sea breeze // Quarterly Journal of the Royal Meteorological Society. 1961. Vol. 87, iss. 372. P. 136–146. https://doi.org/10.1002/qj.49708737203
  29. Mak M. K., Walsh J. E. On the Relative Intensities of Sea and Land Breezes // Journal of the Atmospheric Sciences. 1976. Vol. 33, iss. 2. P. 242–251. https://doi.org/10.1175/1520-0469(1976)033%3C0242:OTRIOS%3E2.0.CO;2
  30. Mahrer Y., Pielke R. A. The Effects of Topography on Sea and Land Breezes in a Two-Dimensional Numerical Model // Monthly Weather Review. 1977. Vol. 105, iss. 9. P. 1151–1162. https://doi.org/10.1175/1520-0493(1977)105%3C1151:TEOTOS%3E2.0.CO;2
  31. Numerical Study on the Effects of Mountains on the Land and Sea Breeze Circulation in the Kanto District / Y. Kikuchi [et al.] // Journal of the Meteorological Society of Japan. Ser. II. 1981. Vol. 59, iss. 5. P. 723–738. https://doi.org/10.2151/jmsj1965.59.5_723
  32. McPherson R. D. A Numerical Study of the Effect of a Coastal Irregularity on the Sea Breeze // Journal of Applied Meteorology and Climatology. 1970. Vol. 9, iss. 5. P. 767–777. https://doi.org/10.1175/1520-0450(1970)009%3C0767:ANSOTE%3E2.0.CO;2
  33. Neumann J., Mahrer Y. A Theoretical Study of the Lake and Land Breezes of Circular Lakes // Monthly Weather Review. 1975. Vol. 103, iss. 6. P. 474–485. https://doi.org/10.1175/1520-0493(1975)103%3C0474:ATSOTL%3E2.0.CO;2
  34. Gille S. T., Llewellyn Smith S. G. When land breezes collide: Converging diurnal winds over small bodies of water // Quarterly Journal of the Royal Meteorological Society. 2014. Part B. Vol. 140, iss. 685. P. 2573–2581. https://doi.org/10.1002/qj.2322
  35. Neumann J., Mahrer Y. A Theoretical Study of the Sea and Land Breezes of Circular Islands // Journal of the Atmospheric Sciences. 1974. Vol. 31, iss. 8. P. 2027–2039. https://doi.org/10.1175/1520-0469(1974)031%3C2027:ATSOTS%3E2.0.CO;2
  36. Xian Z., Pielke R. A. The Effects of Width of Landmasses on the Development of Sea Breezes // Journal of Applied Meteorology. 1991. Vol. 30, iss. 9. P. 1280–1304. https://doi.org/10.1175/1520-0450(1991)030%3C1280:TEOWOL%3E2.0.CO;2
  37. Drobinski P., Dubos T. Linear breeze scaling: from large‐scale land/sea breezes to mesoscale inland breezes // Quarterly Journal of the Royal Meteorological Society. 2009. Part A. Vol. 135, iss. 644. P. 1766–1775. https://doi.org/10.1002/qj.496
  38. The Influence of Soil Moisture, Coastline Curvature, and Land-Breeze Circulations on Sea-Breeze-Initiated Precipitation / R. D. Baker [et al.] // Journal of Hydrometeorology. 2001. Vol. 2, iss. 2. P. 193–211. https://doi.org/10.1175/1525-7541(2001)002%3C0193:TIOSMC%3E2.0.CO;2
  39. Operating ranges of mesoscale numerical models and meteorological wind tunnels for the simulation of sea and land breezes / R. Avissar [et al.] // Boundary-Layer Meteorology. 1990. Vol. 50, iss. 1. P. 227–275. https://doi.org/10.1007/BF00120526
  40. Abbs D. J., Physick W. L. Sea-breeze observations and modelling: a review // Australian Meteorological Magazine. 1992. Vol. 41. P. 7–19.
  41. Rotunno R. On the Linear Theory of the Land and Sea Breeze //Journal of the Atmospheric Sciences. 1983. Vol. 40, iss. 8. P. 1999–2009. https://doi.org/10.1175/1520-0469(1983)040%3C1999:OTLTOT%3E2.0.CO;2
  42. Niino H. The Linear Theory of Land and Sea Breeze Circulation // Journal of the Meteorological Society of Japan. Ser. II. 1987. Vol. 65, iss. 6. P. 901–921. https://doi.org/10.2151/jmsj1965.65.6_901
  43. Benjamin T. B. Gravity currents and related phenomena // Journal of Fluid Mechanics. 1968. Vol. 31, iss. 2. P. 209–248. https://doi.org/10.1017/S0022112068000133
  44. Xu Q. Density Currents in Shear Flows–A Two-Fluid Model // Journal of the Atmospheric Sciences. 1992. Vol. 49, iss. 6. P. 511–524. https://doi.org/10.1175/1520-0469(1992)049%3C0511:DCISFA%3E2.0.CO;2
  45. Biggs W. G., Graves M. E. A Lake Breeze Index // Journal of Applied Meteorology and Climatology. 1962. Vol. 1, iss. 4. P. 474–480. https://doi.org/10.1175/1520-0450(1962)001%3C0474:ALBI%3E2.0.CO;2
  46. Antonelli M., Rotunno R. Large-Eddy Simulation of the Onset of the Sea Breeze // Journal of the Atmospheric Sciences. 2007. Vol. 64, iss. 12. P. 4445–4457. https://doi.org/10.1175/2007JAS2261.1
  47. Pearce R. P. The calculation of a sea‐breeze circulation in terms of the differential heating across the coastline // Quarterly Journal of the Royal Meteorological Society. 1955. Vol. 81, iss. 349. P. 351–381. https://doi.org/10.1002/qj.49708134906
  48. Du Y., Rotunno R., Zhang F. Impact of Vertical Wind Shear on Gravity Wave Propagation in the Land–Sea-Breeze Circulation at the Equator // Journal of the Atmospheric Sciences. 2019. Vol. 76, iss. 10. P. 3247–3265. https://doi.org/10.1175/JAS-D-19-0069.1
  49. Pielke R. A. A Three-Dimensional Numerical Model of the Sea Breezes over South Florida // Monthly Weather Review. 1974. Vol. 102, iss. 2. P. 115–139. https://doi.org/10.1175/1520-0493(1974)102%3C0115:ATDNMO%3E2.0.CO;2
  50. Steyn D. G., McKendry I. G. Quantitative and Qualitative Evaluation of a Three-Dimensional Mesoscale Numerical Model Simulation of a Sea Breeze in Complex Terrain // Monthly Weather Review. 1988. Vol. 116, iss. 10. P. 1914–1926. https://doi.org/10.1175/1520-0493(1988)116%3C1914:QAQEOA%3E2.0.CO;2
  51. Yimin M., Lyons T. J. Numerical Simulation of a Sea Breeze Under Dominant Synoptic Conditions at Perth // Meteorology and Atmospheric Physics. 2000. Vol. 73. P. 89–103. https://doi.org/10.1007/s007030050067
  52. Zhu M., Atkinson B. W. Observed and modelled climatology of the land–sea breeze circulation over the Persian Gulf // International Journal of Climatology. 2004. Vol. 24, iss. 7. P. 883–905. https://doi.org/10.1002/joc.1045
  53. Numerical Simulations of Sea-Breeze Circulations over Northwest Hawaii / Y. Zhang [et al.] // Weather and Forecasting. 2005. Vol. 20, iss. 6. P. 827–846. https://doi.org/10.1175/WAF859.1
  54. A simulation study of mesoscale coastal circulations in Mississippi Gulf coast / V. S. Challa [et al.] // Atmospheric Research. 2009. Vol. 91, iss. 1. P. 9–25. https://doi.org/10.1016/j.atmosres.2008.05.004
  55. Ефимов В. В., Барабанов В. С. Развитие летней бризовой циркуляции в западном регионе Черного моря // Морской гидрофизический журнал. 2010. № 5. С. 21–32. EDN TOERWN.
  56. A characterization of sea-breeze events in the eastern Cantabrian coast (Spain) from observational data and WRF simulations / J. A. Arrillaga [et al.] // Atmospheric Research. 2016. Vol. 181. P. 265–280. https://doi.org/10.1016/j.atmosres.2016.06.021
  57. Mitsumoto S., Ueda H., Ozoe H. A Laboratory Experiment on the Dynamics of the Land and Sea Breeze // Journal of the Atmospheric Sciences. 1983. Vol. 40, iss. 5. P. 1228–1240. https://doi.org/10.1175/1520-0469(1983)040%3C1228:ALEOTD%3E2.0.CO;2
  58. The Land/Sea Breeze Experiment (LASBEX) / J. M. Intrieri [et al.] // Bulletin of the American Meteorological Society. 1990. Vol. 71, iss. 5. P. 656–664. https://doi.org/10.1175/1520-0477-71.5.656
  59. Simpson J. E., Britter R. E. A laboratory model of an atmospheric mesofront // Quarterly Journal of the Royal Meteorological Society. 1980. Vol. 106, iss. 449. P. 485–500. https://doi.org/10.1002/qj.49710644907
  60. Rottman J. W., Simpson J. E. Gravity currents produced by instantaneous releases of a heavy fluid in a rectangular channel // Journal of Fluid Mechanics. 1983. Vol. 135. P. 95–110. https://doi.org/10.1017/S0022112083002979
  61. Shin J. O., Dalziel S. B., Linden P. F. Gravity currents produced by lock exchange // Journal of Fluid Mechanics. 2004. Vol. 521. P. 1–34. https://doi.org/10.1017/S002211200400165X
  62. Fisher E. L. An Observational Study of the Sea Breeze // Journal of the Atmospheric Sciences. 1960. Vol. 17, iss. 6. P. 645–660. https://doi.org/10.1175/1520-0469(1960)017%3C0645:AOSOTS%3E2.0.CO;2
  63. Tijm A. B. C., Van Delden A. J., Holtslag A. A. M. The Inland Penetration of Sea Breezes // Contributions to Atmospheric Physics. 1999. Vol. 72, iss. 4. P. 317–328.
  64. Wakimoto R. M., Atkins N. T. Observations of the Sea-Breeze Front during CaPE. Part I: Single-Doppler, Satellite, and Cloud Photogrammetry Analysis // Monthly Weather Review. 1994. Vol. 122, iss. 6. P. 1092–1114. https://doi.org/10.1175/1520-0493(1994)122%3C1092:OOTSBF%3E2.0.CO;2
  65. Anjos M., Lopes A. Sea breeze front identification on the northeastern coast of Brazil and its implications for meteorological conditions in the Sergipe region // Theoretical and Applied Climatology. 2019. Vol. 137. P. 2151–2165. https://doi.org/10.1007/s00704-018-2732-x
  66. Schmidt F. H. An Elementary Theory of the Land- and Sea-Breeze Circulation // Journal of the Atmospheric Sciences. 1947. Vol. 4, iss. 1. P. 9–20. https://doi.org/10.1175/1520-0469(1947)004%3C0009:AETOTL%3E2.0.CO;2
  67. Malkus J. S., Stern M. E. The Flow of a Stable Atmosphere over a Heated Island, Part 1 // Journal of the Atmospheric Sciences. 1953. Vol. 10, iss. 1. P. 30–41. https://doi.org/10.1175/1520-0469(1953)010%3C0030:TFOASA%3E2.0.CO;2
  68. Geisler J. E., Bretherton F. P. The Sea-Breeze Forerunner // Journal of the Atmospheric Sciences. 1969. Vol. 26, iss. 1. P. 82–95. https://doi.org/10.1175/1520-0469(1969)026%3C0082:TSBF%3E2.0.CO;2
  69. Kimura R. Dynamics of Steady Convections over Heat and Cool Islands // Journal of the Meteorological Society of Japan. 1975. Vol. 53, P. 440–457. https://doi.org/10.2151/jmsj1965.53.6_440
  70. Neumann J. On the Rotation Rate of the Direction of Sea and Land Breezes // Journal of the Atmospheric Sciences. 1977. Vol. 34, iss. 12. P. 1913–1917. https://doi.org/10.1175/1520-0469(1977)034%3C1913:OTRROT%3E2.0.CO;2
  71. Qian T., Epifanio C. C., Zhang F. Linear Theory Calculations for the Sea Breeze in a Background Wind: The Equatorial Case // Journal of the Atmospheric Sciences. 2009. Vol. 66, iss. 6. P. 1749–1763. https://doi.org/10.1175/2008JAS2851.1
  72. Jiang Q. On Offshore Propagating Diurnal Waves // Journal of the Atmospheric Sciences. 2012. Vol. 69, iss. 5. P. 1562–1581. https://doi.org/10.1175/JAS-D-11-0220.1
  73. Drobinski P., Rotunno R., Dubos T. Linear theory of the sea breeze in a thermal wind // Quarterly Journal of the Royal Meteorological Society. 2011. Part B. Vol. 137, iss. 659. P. 1602–1609. https://doi.org/10.1002/qj.847
  74. Miles J. W. On the stability of heterogeneous shear flows // Journal of Fluid Mechanics. 1961. Vol. 10, iss. 4. P. 496–508. https://doi.org/10.1017/S0022112061000305
  75. Booker J. R., Bretherton F. P. The critical layer for internal gravity waves in a shear flow // Journal of Fluid Mechanics. 1967. Vol. 27, iss. 3. P. 513–539. https://doi.org/10.1017/S0022112067000515
  76. Jones W. L. Propagation of internal gravity waves in fluids with shear flow and rotation // Journal of Fluid Mechanics. 1967. Vol. 30, iss. 3. P. 439–448. https://doi.org/10.1017/S0022112067001521
  77. Grimshaw R. Internal gravity waves: critical layer absorption in a rotating fluid // Journal of Fluid Mechanics. 1975. Vol. 70, iss. 2. P. 287–304. https://doi.org/10.1017/S0022112075002030
  78. Шокуров М. В., Краевская Н. Ю. Критические уровни бризовой циркуляции в рамках линейной теории // Морской гидрофизический журнал. 2022. Т. 38, № 6. С. 620–636. EDN HXGABB. https://doi.org/10.22449/0233-7584-2022-6-620-636
  79. Fisher E. L. A Theoretical Study of the Sea Breeze // Journal of the Atmospheric Sciences. 1961. Vol. 18, iss. 2. P. 216–233. https://doi.org/10.1175/1520-0469(1961)018%3C0216:ATSOTS%3E2.0.CO;2
  80. Martin C. L., Pielke R. A. The Adequacy of the Hydrostatic Assumption in Sea Breeze Modeling over Flat Terrain // Journal of the Atmospheric Sciences. 1983. Vol. 40, iss. 6. P. 1472–1481. https://doi.org/10.1175/1520-0469(1983)040%3C1472:TAOTHA%3E2.0.CO;2
  81. Yang X. A study of nonhydrostatic effects in idealized sea breeze systems // Boundary-Layer Meteorology. 1991. Vol. 54. P. 183–208. https://doi.org/10.1007/BF00119419
  82. Neumann J., Mahrer Y. A Theoretical Study of the Land and Sea Breeze Circulation // Journal of the Atmospheric Sciences. 1971. Vol. 28, iss. 4. P. 532–542. https://doi.org/10.1175/1520-0469(1971)028%3C0532:ATSOTL%3E2.0.CO;2
  83. Segal M., Pielke R. A. The effect of water temperature and synoptic winds on the development of surface flows over narrow, elongated water bodies // Journal of Geophysical Research: Oceans. 1985. Vol. 90, iss. C3. P. 4907–4910. https://doi.org/10.1029/JC090iC03p04907
  84. Pielke R. A. A Comparison of Three-Dimensional and Two-Dimensional Numerical Predictions of Sea Breezes // Journal of the Atmospheric Sciences. 1974. Vol. 31, iss. 6. P. 1577–1585. https://doi.org/10.1175/1520-0469(1974)031%3C1577:ACOTDA%3E2.0.CO;2
  85. Anthes R. A., Warner T. T. Development of Hydrodynamic Models Suitable for Air Pollution and Other Mesometeorological Studies // Monthly Weather Review. 1978. Vol. 106, iss. 8. P. 1045–1078. https://doi.org/10.1175/1520-0493(1978)106%3C1045:DOHMSF%3E2.0.CO;2
  86. Richiardone R., Pearson R. A. Inland convection and energy transfers in a sea breeze model // Quarterly Journal of the Royal Meteorological Society. 1983. Vol. 109, iss. 460. P. 325–338. https://doi.org/10.1002/qj.49710946006
  87. Bechtold P., Pinty J.-P., Mascart F. A Numerical Investigation of the Influence of Large-Scale Winds on Sea-Breeze- and Inland-Breeze-type Circulations // Journal of Applied Meteorology and Climatology. 1991. Vol. 30, iss. 9. P. 1268–1279. https://doi.org/10.1175/1520-0450(1991)030%3C1268:ANIOTI%3E2.0.CO;2
  88. Ookouchi Y. On the Parameter Dependence of Two-Dimensional Sea-Breeze Models // Journal of the Meteorological Society of Japan. Ser. II. 1992. Vol. 70, iss. 2. P. 689–701. https://doi.org/10.2151/jmsj1965.70.2_689
  89. Porson A., Steyn D. G., Schayes G. S. Formulation of an Index for Sea Breezes in Opposing Winds // Journal of Applied Meteorology and Climatology. 2007. Vol. 46, iss. 8. P. 1257–1263. https://doi.org/10.1175/JAM2525.1
  90. Skamarock W. C., Klemp J. B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications // Journal of Computational Physics. 2008. Vol. 227, iss. 7. P. 3465–3485. https://doi.org/10.1016/j.jcp.2007.01.037
  91. Steyn D. G. Scaling the vertical structure of sea breezes revisited // Boundary-Layer Meteorology. 2003. Vol. 107. P. 177–188. https://doi.org/10.1023/A:1021568117280

Скачать статью в PDF-формате