
UDC 551.465 

S. Patil, V.P. Singh 

Effect of vertically logarithmic steady current 
on sballow surface waves 

The comblne wave-current flow has Ьееn solved Ьу researchers Ьу assuming wave over either depth­
wise constant or linearly current profile. Some complicated non-linear current profiles have also been 
considered to simulate various shear currents. In this paper, а non-linear current, vertically logarithmic in 
nature is considered and its interaction with а periodic surface wave is exarnined. Navier-Stokes equa­
tions for incompressiЫe flow are solved for the current part and Ьу using periodic Ьoundary conditions; 
effect of logarithmic current оп wave components is assessed. The corresponding celerity and dispersion 
equation yields а close forrn solution for the shallow wave approximation. Several comparative trends 
Ьetween wave-only, wave with log current and with constant current for the wave following/opposing 
these currents have Ьееn discussed. The flow properties of the tirst order are presented which сап Ье 
applicaЫe to the real inland and coastal flows where progressive waves are ublquitous over depth-wise 
logarithmic current. The work is further extended to the second order semi-empirical wave component 
using past experimental data оп wave spe<.,-trum of comblne flow. 

1. lвtrod11ctioв. Several working groups like atmospheric sciences, oceanog­
raphy, including waves, and remote sensing have investigated the benefits of 
coastal and estuarine hydrodynamics where the topic of comblne wave-current 
flow is of immense importance. When а surface wave meets а steady current un­
derneath, it undergoes change in amplitude during adaptation process [ 1] to reach 
to а steady state after which the cornЬine profile remains p~rmanent over space aod 
tirne. The interaction shows that waves are strained and refracted Ьу curreots aod 
exchange of impulse, momentum, and eoergy occurs between the waves and meao 
flow. This causes chaoge in the magnitude of current at the bottom and surface [2] 
and also change in the flow properties such as horizootal and vertical velocities, 
turbuleot characteristics, pressure aod eoergy distributions, etc [3]. Mixiog due to 
waves and currents greatly enhances the traosfer of chemical and Ьiological ele­
meots, especially io the coastal zooe. Wave ioduced orЬital velocity causes erosion 
of sediments which are advected Ьу the steady current [4]. The wave flumes or the 
offshore basins in hydrodynamic laЬoratory are therefore, designed especially to 
provide precise scaled-versioos of various wave-curreot comЬioatioos. Io the ex­
periments оо wave-current is used а sheared current haviog vertical profile almost 
linear near the free surface but very much curved near the bottom [5 - 7]. This cur­
reot profile сап Ье simulated Ьу well-koowo logarithmic law [3]. Examples of 
comblne wave over depth-wise logarithmic curreot flow (hereto denoted as wave­
log current, see Fig. l) are: uoiform flow io open chanoel with surface waves due 
to uЬiquity of wind shear or long-period tides in costal zones. The vertical current 
profile in these flows is oearly logarithmic. Accurate modeling of this flow pattern 
is important for dispersion and diffusion studies, geophysical uoderstandiog and 
coastal coostruction because any approximatioo to the existing wave-log curreot 
may lead to numerous Ьiases io the results. This oote presents the formulation and 
properties of the wave-log current flow. А brief literature review оо wave-current 
ioteraction is as follows. 
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2. Literature review. Past studies оп wave-current interaction have approxi­
mated current component as depth-wise -constant, -linear or -nonlinear. The sim­
plest form is the depth-wise constant current under sinusoidal wave [8, 9] which is 
extended for non-linear waves in [ 1 О] using velocity potential and in [ 11] using 
stream function. Wave diffi-action over а shoal- and wave-constant current interac­
tion was studied in [12]. 

ln case of depth-dependent current, it is assumed in paper [13] depth-wise lin­
ear cuпent under wave to study surface displacement and particle velocities. ln 
[14] was used stream function approach [11] to simulate non-linear waves on linear 
current and has been numerically studied in [ 15] and also in [ 16] using vorticity in 
terms of shear current. Models that predict the steady-state of the interaction, using 
given wave pattem and linear current, were proposed in [17, 18]. However, due to 
the linear nature of current, these models fail to simulate the non-linear current in 
the real flows in field especially when real flows are measured Ьу high-resolution 
instruments \ike Synthetic Aperture Radars, ENVISA Т, SWIMSA Т, etc. Indeed, it 
is necessary for maritime structures like ship, tloating and fixed platform to Ье ac­
curately tested for there performances in the real hydrodynamic environment. 

The depth-wise nonlinear current under wave has been modeled Ьу using а 
cluster of straight lines [ 19]. Waves with Ьilinear current profiles in deep water are 
studied in [20] and in [21] for shallow water. А more complicated current profile 
was considered in [22] Ьу dividing the fluid in two regions of differing vorticity 
which had Ьееn further modified in [23] Ьу using 117th law to present comЬine 
stream function and dispersion relation. Authors of [24] used mixing \ength hy­
pothesis to derive mathematical model for mean velocity under waves in current 
direction. Some solutions in tenns of hypergeometric function for the waves with 
various shearing profiles are included in [25]. А power series velocity equation 
derived in [26] based оп Prandtl momentum-transfer theory but requires ап expo­
nent to Ье deterrnined empirically for current-only as well as wave-current case [3]. 
The slow deforrnation of propagating waves over а given slowly-varying uniform 
current were descriЬed in [18, 27]; however such current profile is difficult to Ье 
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known а priory. Author of [28] induced the non-linearity in the current profile Ьу 
WКВ approximation (weakly nonlinear); Ьу multiplying linear profile with а pa­
rameter and also Ьу providing it а wave-induced shift. The current profiles were 
complex functions and provided good agreement with experiments. The dispersion 
relation for waves оп depth-wise exponential shear current was examined in [29 -
31] and further studied in [32] using stream function theory to consider wave char­
acteristics. The dispersion relations for these cases, which assign the appropriate 
wave numЬer to the given wave period, has also Ьееп determined in [23] using а 
WКВ approach and more generally in [33, 34]. Тhese assumed current profiles 
were in the form of trigonometric and hyperЬolic functions and hence complex. 

1n this note, depth-wise log-current is used as а nonlinear case of shear current 
and its effect оп the surface periodic wave is investigated. 1n addition to the mean 
flow velocity, the rotational nature ofthe shear current changes the wave characteris­
tics [35]. The resultant model is in the form of а comblne stream function 1/f(x, у, t) 
for two-dimensional, incompressiЫe steady flow with а surface periodic wave where 
х, у are the flow and vertical directions, respectively and t is the time. Thus, the log­
cuпent for the turЬulent flow и1 ==(и./ kv)ln(ЗOy/ ks) in simplified form сап Ье 

written as 

(1) 

where Uc = З.7и. [36], и. is the shear velocity, kv = 0.4 is the von Karman's con­

stant, and k, is the Nikurandze's roughness coefficient. It was shown in [37, рр. 16, 
17] that (1) is valid near Ьottom region and for far region, equation (1) with а wake 
function [38) should Ье used. However, in practical applications, equation (1) is 
still commonly assumed to describe the velocity distribution over the entire depth 
of uniform, steady open-channel flows. The shear in (1) provides vorticity and with 
а surface wave, forms two-dimensional rotational periodic flow. In absence of 

shear (constant-velocity case), и. == О and Uc == И (mean flow velocity) is substi-

tuted in (1) which provides и1 = И and the flow Ьecomes two-dimensional irrota­

tional periodic flow. То derive the comЬine stream function, the stream function of 
(1) ( current part), i.e. 

is taken а priory (Вз is а constant and is zero for the horizontal Ьottom) and the 
stream function for the wave components influenced Ьу the current part are derived 
using wave theory. Тhе approach is inverse to that given Ьу authors of [17], who 
assumed wave component а priory and derived current component which however, 
is depth-wise linear current profile. Тhе celerity, dispersion relation and the flow 
properties for wave-log current to the first order of wave amplitude are presented. 
The second order wave is also empirically simulated Ьу using experimental data 
(see, [3]). 
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3. Formulation of wave-log current t1ow. The equations of motion neg\ect­
ing the viscous effect сап Ье written as 

(2а) 

(2Ь) 

where р is the constant density, р is the pressure in the fluid, g is the acceleration 
due to gravity, t is the time, х is the flow direction and у is the vertical direction 
measured from the channel Ьottom. Also и= дf/1 / сЪ, and v = -дf/1 / дх are the ve­

locity components in х and у di~tion respectively where 1/1 is the stream function. 
Equations (2а) and (2Ь) are integrated over х and у respectively. Using continuity 
equation ди / дх + дv / сЪ, = О and conservation of vorticity and eliminating pressure 

terms, the resultant two-dimensional equation of motion for an incompressiЫe, 
inviscid fluid is written as [17] 

( д - ) 2 дt +V•V V 1{1=0, (3) 

а д 2 д2 а2 

where V = а,-.- Т +-;:, .7 is the two-dimensional gradient operator, V =-+--
Л, vy дх2 (ryl2 

- дf/1 - дl{I -
is the two-dimensional Laplacian operator and V=-i --j is the velocity 

сЪ, дх 

vector. Substituting these quantities in equation (3), it Ьecomes 

The velocity perpendicular to the flat bottom at у = О is zero. This provides 
horizontal Ьottom condition as 

- дl{I =0 at у= О. 
дх 

Further, the free surface kinematic Ьoundary condition сап Ье written as 

(4) 

(5) 

where 'f is the wave surface. The dynamic free surface Ьoundary condition is given as 

( д2 д ) - gr,+ J -+V --V f/IOY = F2(x,t) оп у= 'f(X, t) 
дtдх дх 

(6) 
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for some function F f...x, t). Moreover, the free surface condition сап Ье written as 

s(x,y,t)= y-17(x,t)=0. (7) 

Neglecting the viscous dissipation at sidewal\s, the wave is assumed to Ье pe­
riodic and permanent type. Therefore the free surface сап Ье represented Ьу Fourier 
series in (kx - ut) as 

00 

17(x,t) = l>п cosn(kx-ot), (8) 
n=O 

where ап are the Fourier coefficients, k = 2tr / L is the wave number, а = 2tr / Т 

is the wave frequency, L is the wavelength, Т is the wave period and п is the order 
of equation (8). In view of (8), 1/1 must also Ье а periodic function as 
lfl(x,y,t) = lfl(kx-ot,y) and therefore forthe horizontal bed, сап Ье written as 

"' 
lfl(x,y,t) = LAn(y)cos n(kx-ot), (9) 

n=O 

where Ап(у) are the coefficients depend on the order п in the Taylor's expansion 
and are determined in the next section. According to the proper choice of the Ап(у), 
the stream function can Ье descriЬed for wave-only case, current-only case or com­
Ьined wave-log current case. Taylor's expansion of (8) and (9) to the first order can 
Ье written as 

17(x,t)=d+ acos(kx-ot), 

lfl(x,y,t) =Ао(у)+ A1(y)cos(kx-ot), 

(10) 

(11) 

where а, = а is the wave amplitude in equation (10) and d is the flow depth. The 

stream function А0(у) in ( 11) corresponds to the log-current velocity given Ьу equa­
tion (1 ). The corresponding stream function Ао(у) is now known а priory and can 
Ье given as 

Now, equation (3) is used to find expressions for А, in (11) to the first order of 
wave amplitude. Thus substituting equation (12) in (3), equation (3) becomes 

24 

а л;-аk2 А1 +Uc k3 А, +(!!!._k3 tnL)л, -
kv k, ( ) sin kx-ot + 

k ,, ( и. k \ у ] ,, и. k А -И А - - п- А --- 1 
с I k k 1 k 2 

V S V у 

+..!_(-k л; А," +k А1 A"')sin2(kx-ot )=О, 
2 

(13) 
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where the prime denotes differentiation with respect to у. Equation (13) suggests 
that for а\\ (kx- at), а set of differential equations are 

А" k2A И kзА (и• kз у) k ,, (и• у) ,, и.k и 1 -и 1+ " · 1+ - · lп- A1-U,, А1 - -kln- А; --,-А1 =0, 
k. .. k_,. . k. k_, . k.y~ 

(14) 

(15) 

Equation ( 15) is the differential equation for wave-only flow. From ( 4 ), f// = О 

for у= О. For this, the periodic part of ( 11) suggests А 1 (у) = О at у = О and ( 15) 

suggests 

(16) 

where В4 is а constant to Ье determined. Substitution of equation ( 16) for т = k in 

(14), equation (14) reduces to _ _!!_•k2 B4sh(ky)=0. This expression satisfies for the 
k,.y 

condition of sh(kd) ➔ О (replaced у= d), which is true for shallow water waves 

(d/L < 0.05; kd < 0.314) dealt with in this paper. Thus equation (14) satisfies (1) 

and therefore validates а priory assumed log-current profi\e. For т > k and т < k, 
trigonometric current profiles result [ 17] and is out of scope of present topic. SuЬ­
stituting А0 (see, equation (12)) and А I from ( 16) with т = k in equation ( 11 ), the 
stream function for the wave-log current flow is 

f//(X,y,t) =~(y1nL- у)+и,. у+В3 +В4 sh(ky)cos(kx-ot), (17) 
kv k" 

where the constant В3 = О as for the flat Ьottom у == О, and thus it is must that 
f//(x,y,t)= О for all t. 

The coefficient В4 in ( 17) now сап Ье determined Ьу applying kinematic free 
д ·• д -

surface Ьoundary condition (equation (5)). Substituting V = дх i + ду j, 

V = дf// Т - дf//] and (7), equation (5) simplified as 
ду дх 

: -~7+(:т-z-] )(:xi+ :] ){y-q)=O, 

ду - дq +(дf// ~- дf// i_){y-q)=O, 
дt дt ду дх дх ду 

ау_ а,, +(дf// ау_ af// ay)-(af// а,,_ дf// а,,) =О. 
дt дt ду дх дх ду ду дх дх ду 

As ду / дt = О, ду / дх = О, а" I ду =О, the equation Ьecomes 
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(18) 

Equation ( 18) is the simplified kinematic free surface Ьoundary condition to 
the first order and is to Ье satisfied at у = d. Substituting (1 О) and (17) in ( 18), 
equation ( 18) Ьecomes 

aasin (kx-at)--!!_•-ak tn Lsin (kx-at)-U,,ak sin (kx-at)-
kv k_, 

_!!k2 В4 sin 2(kx-at)ch(ky)-B4ksh(ky)sin(kx-·at) =0. 
2 

The term consisting sin 2(kx-at) corresponds to second order expa11sion and 

hence neglected. From the remaining terms and у= d, В4 сап Ье given as 

а [ и. d ] В4 =-- C--ln--U, . 
sh (kd) kv k_, 

(19) 

Substituting ( 19) in ( 17), the corresponding stream function to tl1e first order is 

и. lr у ) ( , и. d ) sh(ky) 1/f(X,y,t)~- yln--y +Ису+а C---ln--Uc --cos(kx-ot), 
k, k., k,, k_, sh(kd) 

(20) 

where С= oik is the absolute celerity. The influence of log-current in the tluid do­
main сап Ье judged from equation (20). Several flow characteristics in the comЬine 
flow domain of wave-log current сап Ье studied from (20) too. Some of them are 
included in section 5. Equation (20) сап Ье modified for wave-constant current 

case Ьу substituting и.= О and Uc == И in (20}. 

4. Celerity авd dispersion relation for wave-log current (tirst-order ap­
proxiмatio■). The dynamic free surface boundary condition of constant pressure 
on the free surface is used to deterrnine the dispersion equation. Equation (6) to the 
first order сап Ье written as 

а11 а J [ а2 
-- а ] -g- + - -- + V· -V 1/f dy= О. 

дх дх дtдх дх 
(21) 

Substituting V = д 1/1 i - д 1/1 ] and V = ~ i + ~] in equation (21 ), 
ду дх дх ду 

Note that, 111for the second terrn of bracketed part will place in the empty place 
of second derivative. The simplified form of equation (21) is 
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-g дlJ +~ Jд21/f dy +~ { дl/f д21/f - дl/f д21/f Jdy = О (21а) 
ах ах а1ах ах JL ду ах2 ах дхdу 

and is to Ье satisfied оп у= d. Substituting equations (10) and (20) in equation 
(21а), the three terms of equation (21а) are as follows. Тhе first, second and third 
terms are 

-g а; =gaksin(kx-ot), 

д Jд21/f ( и. d ) ch(ky) - --dy =-kua C--ln--Uc --cos(h-ot), 
дх дtдх k" ks sh(kd) 

( дl/f д21/f дl/f д21/fJ k2a ( и. d )("•) --2 ---2 dy=--- C--ln--Uc - .Зcos(kx-ot)-
дy дх дх ду sh(kd) k" ks k" 

-k2a2 (c-~ln.!!_-Uc)
2 

ch(2ky) kau(c- и. ln.!!_-uc) ch(ky) cos(kx-ot). 
k, k, 4sh(kd) k" k, sh(kd) 

The calculation involves integral .3 = Jtn(y/ ks)sh(ky)dy. Following ap­

proximation for shallow water waves, i. е., d / L s; 0.05 , close form solution of the 
integral is derived as 

The derivation is included in Appendix (see, equation (А6)). Another solution 
Ьу way of Ei(z) function (exponential integral function) is also presented in the 
Appendix. Finally the х derivative ofthe third term is 

д (д,р д21/f дl/f д21/f) k3a [ • и. d ]("• J . - -------- dy =-- C--ln--U - .3s10(kx-ot)+ 
дх ду дх2 дх дхdу sh (kd) k" ks с k" 

2 -[ и. d ]ch(ky) . +k aU C--ln--Uc --stn(kx-ot). 
k" ks sh(kd) 

Substituting the solution of .З , the third term is rewritten as 

2 [ и. d ]("•) у ch(ky) . k а C--ln--U - ln-•--'---'--'-Stn(kx-ot)-
k, ks с k, k. sh(kd) 

2 [ и. d ]("•) k а C--ln--U - Т. 
k k с k 1 

.. s " sin(kx-ot)+ 
sh(kd) 
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2 -[ и. d ] ch ( ky) . +k аИ C--ln---Uc --sю(kx--ot), 
kv k, sh(kd) 

where 7; = ln(y / k,) + (1су)2 / 4. Alternatively Т. = [Ei(-kd)+ Ei(kd)]! 2 can also Ье 
used (see part В of Appendix). Substituting the three terms in equation (2 la) and 
applying condition у = d, equation (21 а) is 

Once again, applying shallow water approximation, i.e., ch(kd) ::-:: 1, 

sh(kd) ::-:: kd and th(kd):::; kd, the above equation Ьecomes 

ka(kd ka [ .., и. d ) .2 [ и. d )[и•) d g )- о- С---. ln--Uc +k а C--ln--U, -- ln---
kv k, kv k" kv k_, 

2 [ и. d ) [ и. ) 2 [ и. d ) -k а C---ln--Uc - т; +k aUc C--ln--Uc = О. 
~ ~ ~ ~ ~ 

Taking round bracket common from second, third and fifth terms, the last 
equation takes the form 

2 [ и. d )[ и. d ) gka(kd)+k а C--ln--Uc -ln-+Uc -С -
kv k, kv k_, 

2 [ , и. d ) [ и. ) - k а С --- ln-. - И - Т. = О 
k k с k 1 ' 

V !\ V 

This quadratic equation provides close form solution for celerity as 

и. [ d (kd)2
] } [и·] 2 [ d (ы)2 ] 2 

С=- ln---- +Ис±- - ln-+-- +4gd, 
2kv k_, 4 2 kv ks 4 

(22) 

where 7; = ln(d / k,) + (kd)2 / 4 was substituted. The positive sign in expression 
(22) is for the waves following current (WFC) whereas the negative sign is for the 
waves opposing current (WOC). The dispersion relation implicit in u can Ье found 
from equation (22) as 
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и.k[ d (kd)2] 1 (u•k)2
[ d (kd)2

]
2 

2 и=- ln---- +Uck±- - ln-+-- +4k gd 
2k, k, 4 2 k. ks 4 (23) 

Equations (22) and (23) are valid for shallow water waves. 

If и.= О (i.e., shear is remov6d fromthe steady velocity) and Uc =И is substi­

tuted in equation (23), it reduces to the well estaЫished dispersion equation for sine 

wave over depth-wise constant current и = kU ± .J g k th (kd) [9]; with shallow 

wave approximation th(kd) ~ kd, the relationship is 

и =kИ ±k.{id. (23а) 

Moreover, the current component сап Ье eliminated to get wave-only case Ьу 
substituting и. = Uc = О in equation (23). For this substitution, equation (23) rc-

duces _to the well-known dispersion equation и2 = gkth(kd) and with th(kd) ~ kd, 

it is 

(23Ь) 

Thus equation (23) includes all the cases and has wide applicabllity. Similarly, 
celerity for the аЬоvе cases also сап Ье obtained from equation (22) Ьу the same 
substitutions. 

То observe the performance of equation (23), some sample values of kd have 
Ьееn computed within shallow wave range (d/L < 0.05) for the cases of d/L-= О.049, 
0.041, 0.035 and 0.031. The corresponding values of kd = 0.31, 0.26, 0.22 and 0.2 

respectively. The constant-current velocity ll = 0.5 m-s-1 is calculated Ьу averag­
ing equation ( 1) over flow depth and the corresponding shear velocity is an order 

less than И, i. е., 0.04 m-s-1• А roughness coefficient k., ~ 1 mm is considered as­
suming concrete-lined Ьottom. For the old concrete, k" will Ье higher and for the 
natural bottoms like rivers ог coastal areas, ks >> \ mm. 

The wave frequency for these above sample cases is computed from equation 
(23) and plotted in Fig. 2 for the wave-log current, wave-constant cuпent and 
wave-only cases. Note that the negative values Ьelow x-axis in these figures denote 
WOC case and therefore their magnitudes (absolute values) should Ье considered 
for comparison. Fig. 2 shows that equation (23) is consistent with the well estab-

Iished trend, uoc d 112 Ьу equations (23а) and (23Ь), for Ьoth WFC and WOC (con­

sider magnitudes of negative values). Fig. 3 if viewed from vertical axis, also fa­
cilitate comparison Ьetween frequencies. Introduction of concuпent shear reduces 
и compare to no-shear ( constant current) case. Тhis supports the observation in [2] 
where is reasoned that this reduction is caused Ьу shear velocity which induces dis­
tortion in eddy viscosity at the surface and reduces near bottom friction velocity. 
Both these effects are minimal in case of WOC and therefore in contrast to WFC, а 
in opposing current is higher for the log-current case. Similar trends have noticed 
in the experiments [24, 39, 40] and in numerical investigation [41]. Moreover, 
Fig. 2 shows higher а for with-current cases than а for no-current case, consistent 
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with the investigation in [9] where is stated that а should increase in presence of 
cuпent. Furtheпnore, the difference between the а value of log-cuпent and con­
stant-cuпent interaction is amplifying with kd. Same amplification can Ье realized 

along vertical axis with respect to а of wave-only case. As crcr::. d 112 , both the 
trends suggest increasing influence of shear for higher values of d/L. This confiпns 
greater effect of shear if short period waves are passed on the shear cuпent. 

Fig. 2 also shows that, for either of the interactions (wave-log current and 
wave-constant cuпent), the magnitude of а is higher for following cuпent than for 
opposing cuпent for the sample cases descriЬed above. However, it is observed in 

calculations of equation (23) that in wave-constant cuпent interaction, if И is de­
creased, then Ьoth the frequencies of WFC and WOC tend to merge to frequency of 
wave-only case. In wave-log cuпent case, the same observation showed that if 
shear velocity reduced, then initially higher а of WFC becomes lower than WOC. 
In other words, unlike wave-constant cuпent case, reduction in shear velocity re­
verses the comparative magnitudes of а between WFC and WOC. 

Fig. 2 shows the outcome of equation (23) for the sample cases described 
above. However, the k5 > 3 mm for the old concrete Ьottom and is much higher for 

unlined Ьottom like in natural streams and coastal zones. For these practical situa­
tions, high value of k., results in а Ьecomes higher in log-current case than con-

stant-current case for WFC. Similarly for WOC, areduces in log-current case than 
constant-current case. Тhese trends are as against ofthat shown in Fig. 2. This con­
firms the importance of shear velocity, in turn suggests that shear current should 
not Ье approximated Ьу constant-current. Comparison of all the cascs describcd 
above with percentage change in wave frequency is tabulated in ТаЫе 1. 

Wave freqпency, s·1 

3 

2 

о 
0.15 

-1 
д 

□ 

-2 

а 

• 

д 

□ 

А • 
• 

0.25 

д 

□ 

А 

• 
• 

kd 0.35 

А 

□ 

Fig. 2. Change in the wave frequency with kd within shallow wave limit. Notations: • - wave­
constant current; ■ - wave-log current; ♦ - wave-only case. Dark symbols correspond to the wave 
following current (WFC), open symbols correspond to the wave opposing current (WOC) 
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ТаЫе 1 
ТЬе increase in wave frequency (in °/о) for tbe cases WFC (wave Пowing current) 

and WOC (wave opposing current) 

kd 

0.31 
0.28 
0.24 
0.20 

lncrease in и in 
WFCover 
WOC,% 

log-
current 

73.30 
73.39 
73.44 
73.48 

con-
stant-

current 
123.70 
123.70 
123.70 
123.70 

Increase in u in 
log:.Cuпent over 
constant-current 

case, % 

WFC 

-7.34 
-7.32 
- 7.31 
-7.30 

woc 

20.30 
20.22 
20.20 
20.18 

Increase in и in 
log-current over 
wave-only case, 

WFC 

28.77 
28.79 
28.80 
28.81 

% 

WOC 

-34.58 
-34.63 
-34.66 
-34.68 

Increase in и 
in constant-
current over 

wave-only case, 

WFC 

38.22 
38.22 
38.22 
38.22 

% 

woc 

-61.86 
-61.86 
-61.86 
-61.86 

5. Second order semi-empirical wave surface and stream function. An at­
tempt is given to derive second order expansion that allows three terms in equa­
tions (8) and (9) for 1f and 1/1, respectively as 

17(x,t) =d + а1 cos (kx-ot)+a2 cos 2(kx-ot) (24) 

and 

where а1 = а is the aцiplitude of wave as descriЬed Ьefore, а2 is the coefficient of 
the second order term and А,(у), i = О, 1 and 2, are coefficients of equation (25), to 
Ье determined. 

The same procedure for first order formulation is followed which reveals 

и у -
А0 =~(yln--y)+U у+В3 and А1 (у) =В4 sh(ky), same as first order whereas 

kv ks 

А2 (у) =В5 sh(2ky). Thus for В3 = О, equation (25) сап Ье rewritten as 

1/1 (x,y,t) = и. (у JnL-y)+Uy+ В4 sh(ky)cos(kx-ct)+ В5 sh2(ky)cos2(kx-ct). (26) 
kv ks 

Further, the second order of the kinematic boundary condition (5) shall pro­
vide expressions for В4 and В5 • Thus second order expansion of equation (5) сап Ье 
written as 

(27) 

Substituting equations (24) and (26) in equation (27) and applying у = d, the 
first order terms (i. е. coefficients of sin(kx-or)) provides equation (19) as а solu-

tion for В4 in equation (26) whereas the collection of coefficients of sin 2(h- at) 

provides expression for Bs as 
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а; ['½( и. d ) и. (1 t12d) k( и. d }h( )] Bs _ _.___ 2 C--ln--Uc -- ---2 -- C--ln--Uc t kd . (28) 
sh(2kd) а1 k, k, k,d 4 а1 4 k, k, 

Тhе only unknown in equation (28) is а2 • From the second order expansion of 
dynamic free surface Ьoundary condition (see, equation (6)), а2 as а function of а1 
сап Ье found out, however the analysis is difficult for wave-log current flow. As 
such, В5 has been obtained empirically using past experimental data. First, а func­
tional relationship for В5 based on equation (28) is formed as 

(29) 

The two independent variaЫes оп the right hand side of equation (29) include 
all the wave and current parameters. Equation (28) shows nonlinear relationships 
between В5 and these independent variaЫes. However, from equation ( 19), it сап 

Ьejudged that the variaЫe af /sh(2kd) would have maintained, had the analytical 
solution of В5 Ьееn obtained. This fact сап Ье confirmed from the same expression 
obtained in paper [17] for wave-linear current interaction. As such, В5 as the 
nonlinear function ofthe independent variaЫes is expressed as 

(30) 

where ф is the regression coefficient to Ье determined from experimental data. The 
term (kx- at) in equation (26) suggests that the experimental data should Ье 
within а wave period such as wave spectrum. Therefore, а theoretical expression of 
wave spectrum within а wave period at у = d is derived. Substituting equations (30) 
and (19) in equation (26), the vertical velocity is derived from equation (26) as 

W = 017 = _ Ol/f = 
ot дх 

= aj С- и. ln~-uc]sin(kx-a)+2kd (с- и. ln~-ucJ; sin2(kx-a). (31) 1 ~ ~ ~ ~ 
Integrating equation (31) with respect to t, the surface wave spectrum 11 is de­

rived as 

( J 2( ); а и. d а и. d 
17 =-- C--ln--Uc cos(kx-ot)+- C--\n--Uc cos2(kx-ot). (32) 

С k, k s С k, k.v 

Experiments of papers [3, 5 - 7] have been noticed, all within intermediate 
wave range of d/L = 0.1 to 0.2. The data of papers [5 - 7] maintained constant 
depth and wave period for all waves. However, paper [3] relates to four experimen­
tal runs with variaЫe wave period which results in four wave spectrums for differ-
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ent wave periods. Therefore his data (ТаЫе 2) used to find ф from equation (32) 

Ьу least square method. 
ln paper [3] the uniform velocity 0.12 m-s-1 corresponds to the no-wave cases 

whereas the wave data is from four wave-only cases. The author passed these 
waves over the uniform velocity and measured the change in the wave spectrum 
due to interaction. This resultant spectrum of wave-current interaction is repro­
duced in Fig. 3 along with the theoretical wave spectrum Ьу equation (32). А phase 
shift ot· 1r/2 is provided to the cosine spectrum of equation (32) for in phase match­
ing with the observed data which is in sine spectrum (Fig. 1 О in paper [3]). The 
value of ф = 1 О to 16 has been observed (ТаЬ\е 2). Some discrepancies are still ob­
served, the reasons may Ье because the current 

Wave aшplitпde, ш 

0.02 ----------------------

0.01 

-0.01 

о Rш11 

■ Rш12 

-Rш1З 

А Rш14 

-0.02....._----'------------&------
о 90 180 270 360 

Pl1asc a11glc, clegгees 

Fig. 3. Surface wave spectrums of wave-log current flows. Notations: lincs with symbols - equation 
(32); symbols only - experimcntal data from paper [3]. 

Experiment 

Run 1 
Run2 
Run 3 
Run4 

Flow 

ТаЬ\е 2 
The flow and wave data from paper (3) 

Uniform Wave Wave Wave ф for comblne 
depth, velocity, amplitude, length, period, wave-log-

m 

0.2 
0.2 
0.2 
0.2 

m-s-1 

0.12 
0.12 
0.12 
0.12 

m 

0.0101 
0.01255 
0.01335 
0.014 

m 

1.05 
1.21 
1.52 
1.82 

s 

0.9 
1.0 
1.2 
1:4 

current 
15 
16 
10 
15 

in experiments is close to semi-empirical power series that deviates from the usual 
logarithmic profile (see, equation (1)) used herein. Thus, more experiments on com­
Ьine flow of sinusoidal wave over log-current are needed for Ьetter estimation of ф. 
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U sing equation ( 19) for В4 and equation (30) for Bs and proper section of ф, the 
stream function for the comЬine wave-log current to the second order сап Ье writ­
ten as 

и. ( у ) ( и. d ) sh(ky) ,p(x,y,t)=- yln--y +Ucy+a C--ln--Uc -- cos(kx-ot)+ 
kv ks kv ks sh(kd) 

( ); 2 и. d sh(2ky) 
+а1 C--ln--Uc _:..__.:.....:...cos2(kx-ot), 

kv ks sh(2kd) 

(33) 

whereas the expression for wave surface to the second order is given Ьу equa­
tion (32). 

6. Properties of wave-log current flow field (to first order). Тhе properties 
of the wave-log current flow to the first order are derived based оп first order 
stream function (Eq. 20) and descriЬed Ьelow. The horizontal and vertical compo­
nents of the velocity and acceleration are respectively 

(34) 

и = ak С --ln--U _;....;_;;_ sш -at ( и. d ) sh(ky) . (kx ) 
у kv ks с sh(kd) 

(35) 

and 

( и. d )ch(ky) . kx 
ах= auk C--ln--Uc -.:..;...;...sш( -ot), 

kv ks sh(kd) 
(36) 

а = -auk С --ln--U ---cos(kx-at) ( и. d ) sh(ky) 
у kv ks с sh(kd) ' 

(37) 

where С is given Ьу equation (22). The trajectory of the particle centred at (х, у) at 
time t = О is descriЬed Ьу the following equations: 

ak( и. d ]ch(ky) . Х =-- C--ln--U ----'~sш(kx-at), 
(1 kv ks с sh(kd) 

(38) 

ak ( и. d ) sh(ky) У= - С --ln--Uc ----';....;_;;_cos(kx-at) . 
и kv ks sh(kd) 

(39) 

Тhе vertical pressure distribution is 
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p=-pg(y-d)+ paCY(C-!!!_\n!!_-uc) ch(ky) cos(kx-at)-
kv k, sh(kd) 

-- 2k2(c-!!!__1n!!_-U )21-ch(2ky). 
ра kv ·· k, · с 4sh2(kd) 

(40) 

The mass, momentum and energy fluxes [42] in the rotational flow field to the 
first order approximation are given respectively as 

и. у (, и. d )sh(ky) 
Q=pd-\n-+ pUcd + а C--\n--Uc -- cos(kx-ot)+ O(a2k 2 ) (41) 

kv k" k,, k, sh(kd) ' 

fYБd2 рСУа (с' и. \ d ) kx 2 2 М = --+ -~ , --- n--Uc cos( -at)+ О(а k ) , 
2 k kv k, 

(42) 

Е = --pg и.~~(~--lnX)-afYБ(c-~~ln!!_ -ис) l-ch(ky) cos(kx-at) + 
2kv 2 k, kv k, ksh(kd) 

+ араи~(с - и. In!!_ - uc)[1nXsh(kd)- ln!!_ - (kd__f]cos(kx-at) + 
kvksh(kd) kv k, k, k, 4 

(43) 

+ арСУ Uc(C-UJcos(kx-at)+]__fYБdU,.(d-y)+O(a2k2 ). 
k · 2 

The irrotational flow properties for the wave-constant current in sha\low 

waves сап Ье obtained Ьу substituting и. = О in the above expressions. The corre­

sponding celerity, i.e., С =И+ fgd, may Ье obtained Ьу substituting и. = О and 

Uc = И in equation (22). Further substitution of и. = Uc = О; provides properties 

for wave-only case and for which equation (22) becornes С = ,{id. 
7. Discussion and conclusions. This study presents the change in the perma­

nence and properties of regular shallow waves in the presence of vertically logarith­

mic current and сап serve as а ground work for possiЫe applications and advances. 

The resultant stream function and wave surface describes the nonlinear interaction of 

the comЬine wave-log current flow field. А close form solution of the corresponding 

dispersion equation (equation (23)) is derived for shallow wave approximation and is 

different in structure than that derived Ьу [17] for wave-linear current. Equation (23) 

reveals several features of WFC and WOC in three types of flow fie\ds, wave-log 

current, wave constant-current and wave-only cases. ТаЫе 1 presents the estimate of 

frequencies for these flows for kd < 0.314, i.e. within shallow wave range. Presence 

of logarithmic shear in following direction enhances pure wave frequency Ьу 29% 

whereas it is 38% in presence of constant current. These increased· values over wave­

only case are due to the dominant distortion in eddy viscosity at surface in presence 

of а following current. Some contrary mechanisms like wave damping and curvature 

of eddy viscosity over flow depth tends to reduce а but are cancelled out Ьу addi-
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tional supportive mechanisms like wave-induced Reynolds' stress reduced friction 
velocity in Ьottom Ьoundary layer [2]. Тhе difference of 9% сап Ье attributed to the 
distortion effect in presence of constant-current. This difference matches with the 
calculated value of 7% (ТаЫе 1, 4th column) for the wave following current if con­
stant current is replace Ьу logarithrnic shear. 

The trend descriЬed above reverses in opposing current. The reduction in а 
over wave-only case is just 3 5% in presence of logarithmic shear whereas it is 62% 
is constant-current is assumed. This suggests rather strong effect of contrary 
mechanisms than supportive ones. Тhе difference of 27% matches with the calcu­
lated value of 200/о (ТаЫе 1, 5th column) for the WOC if constant сштеnt is re­
placed Ьу logarithmic shear. Furthermore, change in flow direction causes 73% 
change in u in case of log-cuпent whereas it is 124% in case of constant cuпent. 
This confirms stronger influence of surface distortion of eddy viscosity in presence 
of constant current than log-current. Physically, the аЬоvе statistics concludes that 
wave speed increases in WFC but the increase in wave speed is slower in log­
current than constant-current. In case of WOC, the wave speed reduces and the re­
duction is slower in log-current than constant-current case. Moreover for high 

roughness like natural Ьeds, the magnitude of d/ks shall reduce, reflecting shal­

lower water depth and for а given wavelength, wave frequency of log-current will 
Ье higher than that of constant-current for WFC and vice versa for WOC. This сап 
Ье judged from Fig. 2 in which the left side extrapolation of constant-current and 
log-current data is crossing each other in Ьoth the WFC and WOC cases. These 
observations show the difference in wave-cuпent properties in presence of shear 
effect, in tum recommends that presence of shear current should not Ье approxi­
mated Ьу constant current. 

The present model of dispersion equation follows all the estaЫished trends for 
wave-constant current flow fields. The method of comblne formulation used for 
wave-log current (i) removes the possiЫe errors involved when depth-wise log­
current is approximated Ьу depth-wise constant or linear current, (ii) removes the 
Ьiases which exist when Ьoth the hydrodynamics (wave and log-current) are not 
considered concштently. The formulation also provides expressions for the cases of 

wave-constant current flow and wave-only flow, Ьу simply substituting и. = О or 

и.= О and И= О, respectively. 
Тhе wave-log current model presented herein can Ье useful in accurate predic­

tion of dispersion of physico-chemical transport in uniform flow with wind waves, 
irnpacts on marine life being irnportant in the coastal zone and in flow studies оп 
vegetation where small change in the horizontal log-velocity result in twice as large 
change in drag force. The application of such model сап Ье extensive, in modeling 
the physical hydrology, morphological evolution, sedimentology and toxicology of 
а wide range of shallow water settings. Some of the finer studies like amount of 
wave damping, surface distortion of eddy viscosity change in the turbulent stresses 
and bottom friction velocity сап Ье studied when the shear flow is vertically loga­
rithmic. The present formulation сап also Ье а guideline for hydrodynamic laЬora­
tories where waves are to Ье generated over the steady log-current to conduct test­
ing and simulation studies. 
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Appendix 

А. Solution via exponential series. Т11с i11tegratio11 of З Ьу patis leads to 

lt сап Ьс 110ted йiat dcrivative of log term сап Ье writte11 as .!!_[111L. )=_)_ __ 
dy k, у 

Wl1e11 tl1is result is iпtegrated, it will Ьс f(I / y)rl►- = lп у+ С,, where С, is the coп­
sta11t of iпtegratioп апd its value sl10t1ld Ье С, = - lп k, to get back the origiпal loga­

гitlнnic fuпctioп. Тlшs the solutioп of f (1 / y)dy:= 111( у/ k,) . Tl1e followi11g deriva­

tioп follows these solt1tio11s 

(А 1) 

Т11е iнtegrals iп fоп1шlа (А]) сап Ье writteп iп the f'orm of а series as 

(А2) 

Substitt1tiпg expressioпs (Л2) iп rclatioп (А 1 ), tl1e odd terrпs сапсеl. Лшs iп­
tegral (А]) is 

1 "' (k )2" 
f--cl1(ky )cly = 111 у + L у 1 . 
у k, ,,~ 1 2п-2п. 

(АЗ) 

r"ог 1!1с waves iп shall()\V water, r1n < 0.05, kd = 2ml / la < 0.314. Лs such, se­
ries iп cqt1atio11 (АЗ) сап Ье tпmcated for O(kd)4 апd relatioп (АЗ) is simplified as 

f 1 ( ) у (ky [ --ch ky dy ~ \п-. +--. 
у k, 4 

(А4) 

Тlшs, а close form solt1tio11 for tl1e shallow wave approximation сап Ье ob­
taiпed as 

Applyiпg the coпditioп у= d to Ье satisfied at mеап st1rface, the solutioп is 

'""" 1 d 1 [- d (kd)2
] :.J~--lп-ch(kd)---- lп-. +-- . 

k k, k k, 4 
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В. Solution via Ei(z) function (exponential integral function). The integra­
tion of З Ьу parts leads to 

in which 

where х1 = ky. Thus, 

З = J1nLsh(ky)dy = !.1nLch{ky)--1 [Ei(-ky)+ Ei(ky)]. (В1) 
k, k k, 2k 

Applying the condition у = d to Ье satisfied at mean surface, the fonnula (В 1) is 

З = !.1n~•ch{Ы)--1 [Еi(-Ы)+ Еi(Ы)]. 
k k, 2k 

The values of Ei(z) can Ье found from standard mathematical taЫes [43]. ln 
general the solution can Ье written as 

1 d 
З =,;ln~·ch(kd)-Тj, 

s 

(В2) 

where Т~ =-1 [Еi(-Ы)+.Еi(Ы)] or Т~ = !.[1n~+ (Ы)2 .]. 
2k k k, 4 
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