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Effect of vertically logarithmic steady current
on shallow surface waves

The combine wave-current flow has been solved by researchers by assuming wave over either depth-
wise constant or linearly current profile. Some complicated non-linear current profiles have also been
considered to simulate various shear currents. In this paper, a non-linear current, vertically logarithmic in
nature is considered and its interaction with a periodic surface wave is examined. Navier-Stokes equa-
tions for incompressible flow are solved for the current part and by using periodic boundary conditions;
effect of logarithmic current on wave components is assessed. The corresponding celerity and dispersion
equation yields a close form solution for the shallow wave approximation. Several comparative trends
between wave-only, wave with log current and with constant current for the wave following/opposing
these currents have been discussed. The flow properties of the first order are presented which can be
applicable to the real inland and coastal flows where progressive waves are ubiquitous over depth-wise
logarithmic current. The work is further extended to the second order semi-empirical wave component
using past experimental data on wave spectrum of combine flow.

1. Introduction. Several working groups like atmospheric sciences, oceanog-
raphy, including waves, and remote sensing have investigated the benefits of
coastal and estuarine hydrodynamics where the topic of combine wave-current
flow is of immense importance. When a surface wave meets a steady current un-
derneath, it undergoes change in amplitude during adaptation process [1] to reach
to a steady state after which the combine profile remains permanent over space and
time. The interaction shows that waves are strained and refracted by currents and
exchange of impulse, momentum, and energy occurs between the waves and mean
flow. This causes change in the magnitude of current at the bottom and surface [2]
and also change in the flow properties such as horizontal and vertical velocities,
turbulent characteristics, pressure and energy distributions, etc [3]. Mixing due to
waves and currents greatly enhances the transfer of chemical and biological ele-
ments, especially in the coastal zone. Wave induced orbital velocity causes erosion
of sediments which are advected by the steady current [4]. The wave flumes or the
offshore basins in hydrodynamic laboratory are therefore, designed especially to
provide precise scaled-versions of various wave-current combinations. In the ex-
periments on wave-current is used a sheared current having vertical profile almost
linear near the free surface but very much curved near the bottom [5 — 7]. This cur-
rent profile can be simulated by well-known logarithmic law [3]. Examples of
combine wave over depth-wise logarithmic current flow (hereto denoted as wave-
log current, see Fig. 1) are: uniform flow in open channel with surface waves due
to ubiquity of wind shear or long-period tides in costal zones. The vertical current
profile in these flows is nearly logarithmic. Accurate modeling of this flow pattern
is important for dispersion and diffusion studies, geophysical understanding and
coastal construction because any approximation to the existing wave-log current
may lead to numerous biases in the results. This note presents the formulation and
properties of the wave-log current flow. A brief literature review on wave-current
interaction is as follows.
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Fig. 1. Combine wave-log current flow field

2. Literature review. Past studies on wave-current interaction have approxi-
mated current component as depth-wise -constant, -linear or -nonlinear. The sim-
plest form is the depth-wise constant current under sinusoidal wave [8, 9] which is
extended for non-linear waves in [10] using velocity potential and in [11] using
stream function. Wave diffraction over a shoal- and wave-constant current interac-
tion was studied in [12].

In case of depth-dependent current, it is assumed in paper [13] depth-wise lin-
ear current under wave to study surface displacement and particle velocities. In
[14] was used stream function approach [11] to simulate non-linear waves on linear
current and has been numerically studied in [15] and also in [16] using vorticity in
terms of shear current. Models that predict the steady-state of the interaction, using
given wave pattern and linear current, were proposed in [17, 18]. However, due to
the linear nature of current, these models fail to simulate the non-linear current in
the real flows in field especially when real flows are measured by high-resolution
instruments like Synthetic Aperture Radars, ENVISAT, SWIMSAT, etc. Indeed, it
is necessary for maritime structures like ship, floating and fixed platform to be ac-
curately tested for there performances in the real hydrodynamic environment.

The depth-wise nonlinear current under wave has been modeled by using a
cluster of straight lines [19]. Waves with bilinear current profiles in deep water are
studied in [20] and in [21] for shallow water. A more complicated current profile
was considered in [22] by dividing the fluid in two regions of differing vorticity
which had been further modified in [23] by using /7" law to present combine
stream function and dispersion relation. Authors of [24] used mixing length hy-
pothesis to derive mathematical model for mean velocity under waves in current
direction. Some solutions in terms of hypergeometric function for the waves with
various shearing profiles are included in [25]. A power series velocity equation
derived in [26] based on Prandtl momentum-transfer theory but requires an expo-
nent to be determined empirically for current-only as well as wave-current case [3].
The slow deformation of propagating waves over a given slowly-varying uniform
current were described in [18, 27]; however such current profile is difficult to be
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known a priory. Author of [28] induced the non-linearity in the current profile by
WKB approximation (weakly nonlinear); by multiplying linear profile with a pa-
rameter and also by providing it a wave-induced shift. The current profiles were
complex functions and provided good agreement with experiments. The dispersion
relation for waves on depth-wise exponential shear current was examined in [29 -
31] and further studied in [32] using stream function theory to consider wave char-
acteristics. The dispersion relations for these cases, which assign the appropriatc
wave number to the given wave period, has also been determined in [23] using a
WKB approach and more generally in [33, 34]. These assumed current profiles
were in the form of trigonometric and hyperbolic functions and hence complex.

In this note, depth-wise log-current is used as a nonlinear case of shear current
and its effect on the surface periodic wave is investigated. In addition to the mean
flow velocity, the rotational nature of the shear current changes the wave characteris-
tics [35]. The resultant model is in the form of a combine stream function y(x, y, f)
for two-dimensional, incompressible steady flow with a surface periodic wave where
x, y are the flow and vertical directions, respectively and ¢ is the time. Thus, the log-
current for the turbulent flow u, =(u./k,)In(30y/k,) in simplified form can be
written as

u =22+ U, (1)

v s

where U, =3.7u, [36], u. is the shear velocity, k, = 0.4 is the von Karman’s con-

stant, and k; is the Nikurandze’s roughness coefficient. It was shown in [37, pp. 16,
17] that (1) is valid near bottom region and for far region, equation (1) with a wake
function [38] should be used. However, in practical applications, equation (1) is
still commonly assumed to describe the velocity distribution over the entire depth
of uniform, steady open-channel flows. The shear in (1) provides vorticity and with
a surface wave, forms two-dimensional rotational periodic flow. In absence of

shear (constant-velocity case), u. = 0 and U, =U (mean flow velocity) is substi-

tuted in (1) which provides u, = U and the flow becomes two-dimensional irrota-

tional periodic flow. To derive the combine stream function, the stream function of
(1) (current part), i.e.

Us
v = Iuldy=k—v(yln;y:~y)+Ucy+Bs

is taken a priory (B; is a constant and is zero for the horizontal bottom) and the
stream function for the wave components influenced by the current part are derived
using wave theory. The approach is inverse to that given by authors of [17], who
assumed wave component a priory and derived current component which however,
is depth-wise linear current profile. The celerity, dispersion relation and the flow
properties for wave-log current to the first order of wave amplitude are presented.
The second order wave is also empirically simulated by using experimental data

(see, [3]).
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3. Formulation of wave-log current flow. The equations of motion neglect-
ing the viscous effect can be written as

p_a_li+u.a—.l£+v§£ :-_‘?1_7.’ (2a)
o0 ox oy Ox

ov ov Ov op

iUt y— == pg, 2b

(aﬁ"ax”ay] o pg (2b)

where p is the constant density, p is the pressure in the fluid, g is the acceleration
due to gravity, ¢ is the time, x is the flow direction and y is the vertical direction
measured from the channel bottom. Also u = 0w /0dy and v=—-0y/0x are the ve-

locity components in x and y direction respectively where y is the stream function.
Equations (2a) and (2b) are integrated over x and y respectively. Using continuity
equation Ou/Ox+0v/0y=0 and conservation of vorticity and eliminating pressure

terms, the resultant two-dimensional equation of motion for an incompressible,
inviscid fluid is written as [17]

0 5o\
—+V-V |[Vy=0, 3
(at ) v 3)

d- 0 - . . . . , o &
where Vz—a—z +-— J is the two-dimensional gradient operator, V°=——+

x dy > - o’ 6y2

. . . . = Oy~ Oy - . .

is the two-dimensional Laplacian operator and V' =——i ———; is the velocity
X

vector. Substituting these quantities in equation (3), it becomes

- \
61//2 D’y +_6£ 6(/: 61// 6(;/ 5u/+6} _0. (3a)
aox> oyt | oy | x' axdy? yox® oy’

The velocity perpendicular to the flat bottom at y = 0 is zero. This provides
horizontal bottom condition as

0 aty=o. (@)
ox

Further, the free surface kinematic boundary condition can be written as

(gmvjs:o on y=1(x1), (5)

where 7 is the wave surface. The dynamic free surface boundary condition is given as

-gn+ j(——w —V)«//dy Fy(x,1) on y=n(x, 1) (6)
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for some function Fx(x, ). Moreover, the free surface condition can be written as
S(x,y,)= y-1(x,0=0. ™)

Neglecting the viscous dissipation at sidewalls, the wave is assumed to be pe-
riodic and permanent type. Therefore the free surface can be represented by Fourier
series in (kx — o) as

n(x1) =) a, cosnlkx~o), ®)
n=0
where a, are the Fourier coefficients, k =2z /L is the wave number, o =27/T
is the wave frequency, L is the wavelength, T is the wave period and » is the order
of equation (8). In view of (8), y must also be a periodic function as
v (x,y,t) = w(kx—ot, y) and therefore for the horizontal bed, can be written as

w(xy,0)=) 4,(y)cos n(kx—oar), )
n=0
where A4,(y) are the coefficients depend on the order n in the Taylor’s expansion
and are determined in the next section. According to the proper choice of the A4,(y),
the stream function can be described for wave-only case, current-only case or com-
bined wave-log current case. Taylor’s expansion of (8) and (9) to the first order can
be written as

n(x,t)=d+ acos(kx—ot), (10)
w(x,y,t) = A, (y)+ A (y)cos(kx -oat), an

where a, = a is the wave amplitude in equation (10) and d is the flow depth. The

stream function A(y) in (11) corresponds to the log-current velocity given by equa-
tion (1). The corresponding stream function A«(y) is now known a priory and can
be given as

k,

y U. Yy
A =U —| yln=—-y |+ B,. 12
'“ks)dy ‘”kv(y"k., y) ’ (2

u,
4,(n= J(Uc +
Now, equation (3) is used to find expressions for 4, in (11) to the first order of
wave amplitude. Thus substituting equation (12) in (3), equation (3) becomes

oA -ok® A, +U, k4 +(-:—’k3 lnkl)A, -
' * sin(kx — ot)+
~U, kA,"—(-u—’kln—y—]A," ——“:-’fz—A, (13)
k k

14 s v

+~;~(—k A A +k A4, A")sin2(loc —o1)=0,
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where the prime denotes differentiation with respect to y. Equation (13) suggests
that for all (kx — ot), a set of differential equations are

» k Us | - » Us » u.k
o A'-ok A +U. K A, +(k—k‘ lnliA‘.—Uck A —(k—vkln-k)—)-jA] o 4,=0, (14)

v LA s, v

—k Al A" +k A A"=0. (15)

Equation (15) is the differential equation for wave-only flow. From (4), ¢ =0
for y = 0. For this, the periodic part of (11) suggests 4, (y) =0 at y = 0 and (15)
suggests

A (y) =B, sh(my), (16)
where B, is a constant to be determined Substitution of equation ( 16) for m =k in

(14), equation (14) reduces t

condition of sh(kd) —> 0 (replaced y = d), which is true for shallow water waves
(d/L < 0.05; kd < 0.314) dealt with in this paper. Thus equation (14) satisfies (1)

and therefore validates a priory assumed log-current profile. For m > k and m < k,
trigonometric current profiles result [17] and is out of scope of present topic. Sub-
stituting A, (see, equation (12)) and 4, from (16) with m = k in equation (11), the
stream function for the wave-log current flow is

w(x,yt)=— [yln;——y]+U y+B; + B, sh(ky)cos(kx—ot), 17

s

where the constant B; = 0 as for the flat bottom y = 0, and thus it is must that
w(x,y,t)=0 forall ¢.

The coefficient B4 in (17) now can be determined by applying kinematic free

surface boundary condition (equation (5)). Substituting V——-aif + 6% 7,
X
=~ Oy~ Oy -
V=-"1-i -——j and (7), equation (5) simplified as
Oy ox

d on (0y; Oy =) 0= 0= _
E*aﬁ(ay' axj)(ax Bylj(’y 7)=0.

Q _on [0y 0 Ow O\ .

o ot (Gy x  ox ayj(y 7)=0.
¥y _on [5‘/’@__5_‘/’@_)_[%@_%?_’7
o o \dyox oxoy) \ oy ox ox oy

As dy/0t=0,0y/0x =0, 0n/dy =0, the equation becomes
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on oyon oy .

o dy ox ox (18)

Equation (18) is the simplified kinematic free surface boundary condition to
the first order and is to be satisfied at y = d. Substituting (10) and (17) in (18),
equation (18) becomes

ao sin (kx - ot) -g-.‘-ak ln—liisin (ko ot) U, ak sin (kx - ot) -

v A

2
- 91;_ B, sin 2(kx — at)ch(ky)~ B,ksh(ky)sin(kx - or) = 0.

The term consisting sin 2(kx — ot) corresponds to second order expansion and
hence neglected. From the remaining terms and y = d, B, can be given as

a Loue d .
B, = c-2ml_y, | 19
‘ sh(kd){ kK } (1)

v A

Substituting (19) in (17), the corresponding stream function to the first order is

4
U y , U d sh(ky)
)= yln=— . C-~>In—-U, s(kx—at), 20
w(x,y,t) p Ly nk y]+l/‘y+a( P nk‘ Jsh(kd)cos( ) (20)

v & v §

where C = otk is the absolute celerity. The influence of log-current in the fluid do-
main can be judged from equation (20). Several flow characteristics in the combine
flow domain of wave-log current can be studied from (20) too. Some of them are
included in section 5. Equation (20) can be modified for wave-constant current
case by substituting u. =0 and U, =U in (20).

4. Celerity and dispersion relation for wave-log current (first-order ap-
proximation). The dynamic free surface boundary condition of constant pressure

on the free surface is used to determine the dispersion equation. Equation (6) to the
first order can be written as

on @ e '
-g— + — + V.=V =0. 21
Ea o [616): o } v @D
Substituting V:Q.Vi'{_g‘f/_j and V-:—a—f+—a—] in equation (21),
oy ox o oy

2 2 2
_._g_a_’l + ..a_ 0 + a_'//;_a_!/i] . _6_5_‘1".’. 0 j v dy= 0.
Ox Ox 7 |Otox Oy ox ox Oxdy

Note that, y for the second term of bracketed part will place in the empty place
of second derivative. The simplified form of equation (21) is
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an o dy d’y oy &y
B vy o -0 21
& o 6x6t6xdyax o o o oy ) (21a)

and is to be satisfied on y = d. Substituting equations (10) and (20) in equation
(21a), the three terms of equation (21a) are as follows. The first, second and third
terms are

on .
—g—=gaksin(kx-ot),
g =84a sin( )

—kaa(C—%‘—ln—‘i—U JM cos(kx—ot),

6t6x k, ¢ )sh(kd)

2 2 2
_Q_Via ‘/2/ Oy 0 ‘/2/ dy=— ka C U ln—‘i—-Uc fuid Jcos(kx—ot)-
y &' x o sh (kd) k, k k,

2
—kzaz(c-ﬂln—d-—ucj ih@l—kaz‘/(c—ﬂmi U]°h(ky)cos(kx —at).
k, k 4sh (kd) k, k h (kd)

s s

v

-~

The calculation involves integral I = Iln(y/ k,)sh(ky)dy . Following ap-

proximation for shallow water waves, i. €., d/L <0.05, close form solution of the
integral is derived as

2
3= jlnk%sh (ky)dy =%lnk—ich(ky)—%[ln—k%+(—ky4-)—].

The derivation is included in Appendix (see, equation (A6)). Another solution
by way of Ei(z) function (exponential integral function) is also presented in the
Appendix. Finally the x derivative of the third term is

o oy dy oy dy Ka |, u d U\ .
O vy oy - c-2mZ_y | % |3sin(ke—or
o\ o o ooy ) TS Tk Mk Y|k, st o+

s

2Tl ot d _y |h)
+k aU[C k ink U} h(kd)sm(kx or).

Substituting the solution of 3, the third term is rewritten as
o, d U ch(ky)
Kalc-%“ml._ 2N -
a[ . nk Uc}(kv]n k. sh )sn n(kx —ot)

v S

Kalc-%md v |[“|1
kV kS kV

sh (kd)

sin (kx — ot) +
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+k2al7[C—-z—‘—'—ln~d—~UC:|Msin(kx—01),
k, k sh (kd)

where 7, =In(y/k,)+(ky)’ /4. Alternatively T, = [Ei(-kd )+ Ei(kd)}/2 can also be

used (see part B of Appendix). Substituting the three terms in equation (21a) and
applying condition y = d, equation (21a) is

gka—-kaa(C—:—:ln%—UC)cth(kaO+k2a(C—%:—ln—gﬂ—Uc)(%]ln%-cth(kd)-
2
~Ka e w0 d gy =g nat] c-2nd U thka) = o.
sh(kd)\ k, &k, k, k, k

Once again, applying shallow water approximation, ie., ch(kd)=~1,
sh(kd) ~ kd and th(kd) ~ kd , the above equation becomes

d u d u d
ka(kd) - kao| C—2in- U, |+k2%a| C-LmZ-vU, || 2 |nL -
gtatke) ”( kK, J "( kK, ”j(kvjnk.,.
Kdc-Bnd_y |-z +kau | o=ty |-,

vk k, k, k,

Taking round bracket common from second, third and fifth terms, the last
equation takes the form

d u. . d
ka(kd)+k*a|C-2nL v | 2mliu -c|-
N NI R

v s

—Kd c-Bmd_y || % |-,
k, & k,

v s

2
us . d ., d U,
c-Lml oy | +lc-mi vy | % |1 -ga=o.
[ P J ( Kk CJ(k ) 1~ &

v

v s

This quadratic equation provides close form solution for celerity as

2 2
C=-2 l:lni~(ﬁ22—}+Uci%\/[—:-i] [miJfg‘%)i} +4gd , (22

T2, k4 \ k,
where 7, =In(d/ ks)+(kd)2/4 was substituted. The positive sign in expression

(22) is for the waves following current (WFC) whereas the negative sign is for the
waves opposing current (WOC). The dispersion relation implicit in ¢ can be found
from equation (22) as
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s

2 2
wk| d_(kd) uk d (kd)
= In— U.k+ 22 [ In= s 1 2
ZkV[ x4 }r 2\/(kv][nk | ted . 23

Equations (22) and (23) are valid for shallow water waves.
If u. = 0 (i.e., shear is removéd from the steady velocity) and U, =U is substi-
tuted in equation (23), it reduces to the well established dispersion equation for sine

wave over depth-wise constant current o =k5i,/ gkth(kd) [9]; with shallow
wave approximation th(kd) = kd , the relationship is

G:kﬁikwlgd. (23a)

Moreover, the current component can be eliminated to get wave-only case by
substituting u, =U_ =0 in equation (23). For this substitution, equation (23) re-

duces to the well-known dispersion equation o’ = gkth(kd)and with th(kd) ~ kd ,
it is

o=kygd. (23b)

Thus equation (23) includes all the cases and has wide appllcablllty Similarly,
celerity for the above cases also can be obtained from equation (22) by the same
substitutions.

To observe the performance of equation (23), some sample values of kd have
been computed within shallow wave range (d/L < 0.05) for the cases of d/L= 0.049,
0.041, 0.035 and 0.031. The corresponding values of kd = 0.31, 0.26, 0.22 and 0.2

respectively. The constant-current velocity U = 0.5 m-s™' is calculated by averag-
ing equation (1) over flow depth and the corresponding shear velocity is an order
less than U , i. e., 0.04 m's™. A roughness coefficient k, ~ 1 mm is considered as-
suming concrete-lined bottom. For the old concrete, k; will be higher and for the
natural bottoms like rivers or coastal areas, k, >> 1 mm.

The wave frequency for these above sample cases is computed from equation
(23) and plotted in Fig. 2 for the wave-log current, wave-constant current and
wave-only cases. Note that the negative values below x-axis in these figures denote
WOC case and therefore their magnitudes (absolute values) should be considered
for comparison. Fig. 2 shows that equation (23) is consistent with the well estab-
lished trend, o d'’> by equations (23a) and (23b), for both WFC and WOC (con-
sider magnitudes of negative values). Fig. 3 if viewed from vertical axis, also fa-
cilitate comparison between frequencies. Introduction of concurrent shear reduces
o compare to no-shear (constant current) case. This supports the observation in [2]
where is reasoned that this reduction is caused by shear velocity which induces dis-
tortion in eddy viscosity at the surface and reduces near bottom friction velocity.
Both these effects are minimal in case of WOC and therefore in contrast to WFC, o
in opposing current is higher for the log-current case. Similar trends have noticed
in the experiments [24, 39, 40] and in numerical investigation [41]. Moreover,
Fig. 2 shows higher o for with-current cases than o for no-current case, consistent
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with the investigation in [9] where is stated that o should increase in presence of
current. Furthermore, the difference between the o value of log-current and con-
stant-current interaction is amplifying with kd. Same amplification can be realized
along vertical axis with respect to o of wave-only case. As o ocd'?, both the
trends suggest increasing influence of shear for higher values of d/L. This confirms
greater effect of shear if short period waves are passed on the shear current.

Fig. 2 also shows that, for either of the interactions (wave-log current and
wave-constant current), the magnitude of o is higher for following current than for
opposing current for the sample cases described above. However, it is observed in
calculations of equation (23) that in wave-constant current interaction, if U is de-
creased, then both the frequencies of WFC and WOC tend to merge to frequency of
wave-only case. In wave-log current case, the same observation showed that if
shear velocity reduced, then initially higher o of WFC becomes lower than WOC.
In other words, unlike wave-constant current case, reduction in shear velocity re-
verses the comparative magnitudes of o between WFC and WOC.

Fig. 2 shows the outcome of equation (23) for the sample cases described
above. However, the k,> 3 mm for the old concrete bottom and is much higher for
unlined bottom like in natural sireams and coastal zones. For these practical situa-
tions, high value of k_ results in o becomes higher in log-current case than con-

stant-current case for WFC. Similarly for WOC, o reduces in log-current case than
constant-current case. These trends are as against of that shown in Fig. 2. This con-
firms the importance of shear velocity, in turn suggests that shear current should
not be approximated by constant-current. Comparison of all the cases described
above with percentage change in wave frequency is tabulated in Table 1.

Wave frequency, s°1

3r :
a
2} 4 ¢
(] . .
L 4
1k
0 A A A 1 J
0.15 0.25 kd 035
A
-1+ o A A
[n] o A
a
Al

Fig. 2. Change in the wave frequency with kd within shallow wave limit. Notations: A — wave-
constant current; m — wave-log current; ¢ — wave-only case. Dark symbols correspond to the wave
following current (WFC), open symbols correspond to the wave opposing current (WOC)
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Table 1

The increase in wave frequency (in %) for the cases WFC (wave flowing current)
and WOC (wave opposing current)

. . . . Increase in o
Increase in & in Incyease in .0' in | Increase in o in in constant-
log-current over log-current over
kd WFC over current over
WOC. % constant-current wave-only case, wave-onl
> case, % % only case,
%
IOg- con-
current stant- WFC WOC WFC WOC WFC WOC
current
0.31 7330 123.70 734 2030 2877 -3458 3822 —61.86
0.28 7339 12370 -732 2022 2879 3463 3822 -61.86
0.24 7344 12370 -731 2020 2880 -3466 3822 —61.86
0.20 7348 12370  —730 2018 2881 —34.68 3822 —61.86

5. Second order semi-empirical wave surface and stream function. An at-
tempt is given to derive second order expansion that allows three terms in equa-
tions (8) and (9) for 5 and y, respectively as

n(x,t)=d + a, cos (kx— ot)+a, cos 2 (kx — ot) 24)

and

w (x,y,0) =4,(y) + 4(y) cos (kx—0t)+ 4,(y) cos 2(kx —ot), (25)

where a; = a is the amplitude of wave as described before, a, is the coefficient of
the second order term and A(y), i =0, 1 and 2, are coefficients of equation (25), to
be determined.

The same procedure for first order formulation is followed which reveals

= % (6% lnkl —-y)+ U y+B; and A4,(y) =B, sh(ky), same as first order whereas

v s

A,(y) =B; sh(2ky) . Thus for B; = 0, equation (25) can be rewritten as

u/(x,y,t)—k [ylnk——y}+Uy+B4sh(ky)cos(kx o)+ B sh2(ky)cos2(kx—ot). (26)

s

Further, the second order of the kinematic boundary condition (5) shall pro-
vide expressions for By and Bs. Thus second order expansion of equation (5) can be
written as

on oy on dv, ondy vy o

a v ax Txe ey

Substituting equations (24) and (26) in equation (27) and applying y = d, the

first order terms (i. e. coefficients of sin (kx —ot) ) provides equation (19) as a solu-

tion for B, in equation (26) whereas the collection of coefficients of sin 2(kx —ot)
provides expression for Bs as
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__a |afc wyd ) w(l ad) k. w d_
5= sh(2kd){a,2 (C kvl k, U‘] kd[4 @ ] 4[C k, tn k, Uc}th(kd)}’ 28)
The only unknown in equation (28) is a,. From the second order expansion of
dynamic free surface boundary condition (see, equation (6)), a; as a function of g,
can be found out, however the analysis is difficult for wave-log current flow. As
such, Bs has been obtained empirically using past experimental data. First, a func-
tional relationship for Bs based on equation (28) is formed as

2 u, ., d
B, f{ h(’?kd) C- _mk_s_U‘}' (29)

The two independent variables on the right hand side of equation (29) include
all the wave and current parameters. Equation (28) shows nonlinear relationships
between Bs and these independent variables. However, from equation (19), it can

be judged that the variable a; /sh (2kd) would have maintained, had the analytical

solution of Bs been obtained. This fact can be confirmed from the same expression
obtained in paper [17] for wave-linear current interaction. As such, Bs as the
nonlinear function of the independent variables is expressed as

a? u d ’
B=—"—|C-——In—-U, |, (30)
sh(2kd)\ ™~ k, K,

where ¢ is the regression coefficient to be determined from experimental data. The
term (kx—ot) in equation (26) suggests that the experimental data should be

within a wave period such as wave spectrum. Therefore, a theoretical expression of
wave spectrum within a wave period at y = d is derived. Substituting equations (30)
and (19) in equation (26), the vertical velocity is derived from equation (26) as

_on__ov_
a

¢
:ak(C—%‘—ln-’;i—Uc]sin(kx—a)+2kaz (C——Ziln—;i—UcJ sin2(ke—of). (31)

v £ v )

Integrating equation (31) with respect to ¢, the surface wave spectrum 7 is de-
rived as

C k

v §

2 ¢
=£(C—%ln—;j——chcos(la—m)+% [C—E'—ln—;i—Uc) cos2(kx—ot). (32)

v s

Experiments of papers [3, 5 — 7] have been noticed, all within intermediate
wave range of d/L = 0.1 to 0.2. The data of papers [S — 7] maintained constant
depth and wave period for all waves. However, paper [3] relates to four experimen-
tal runs with variable wave period which results in four wave spectrums for differ-
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ent wave periods. Therefore his data (Table 2) used to find ¢ from equation (32)
by least square method.

In paper [3] the uniform velocity 0.12 m's™' corresponds to the no-wave cases
whereas the wave data is from four wave-only cases. The author passed these
waves over the uniform velocity and measured the change in the wave spectrum
due to interaction. This resultant spectrum of wave-current interaction is repro-
duced in Fig. 3 along with the theoretical wave spectrum by equation (32). A phase
shift of /2 is provided to the cosine spectrum of equation (32) for in phase match-
ing with the observed data which is in sine spectrum (Fig. 10 in paper [3]). The
value of ¢= 10 to 16 has been observed (Table 2). Some discrepancies are still ob-
served, the reasons may be because the current

Wave amplitude, m

0.02 T . —_
I 0 Run 1 i
m Run2
0.01} — Run 3 T
A Run 4

-0.01

_002 1 1 1
0 90 180 270 360
Phase angle, degrees

Fig. 3. Surface wave spectrums of wave-log current flows. Notations: lines with symbols — equation
(32); symbols only - experimental data from paper [3].

Table 2
The flow and wave data from paper [3]
Flow Uniform Wave Wave Wave | ¢ for combine
Experiment depth, velocity, amplitude, length, period, wave-log-
m ms™ m m S current
Run 1 0.2 0.12 0.0101 1.05 0.9 15
Run 2 0.2 0.12 0.01255 1.21 1.0 16
Run 3 0.2 0.12 0.01335 1.52 1.2 10
Run 4 0.2 0.12 0.014 1.82 1.4 15

in experiments is close to semi-empirical power series that deviates from the usual
logarithmic profile (see, equation (1)) used herein. Thus, more experiments on com-
bine flow of sinusoidal wave over log-current are needed for better estimation of ¢.
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Using equation (19) for B, and equation (30) for Bs and proper section of ¢, the
stream function for the combine wave-log current to the second order can be writ-
ten as

——U,. |—= cos(kx-ot) +

Us y
put)=—| yln==y |+U c-—
y (x.0,0) kv(y n- y) cy+a( e sh(kd)

s

w, d ]sh(ky)

(33)

(4
v@|c-“md_y | hCR) oo ke,
k sh(2kd)

v s

whereas the expression for wave surface to the second order is given by equa-
tion (32).

6. Properties of wave-log current flow field (to first order). The properties
of the wave-log current flow to the first order are derived based on first order
stream function (Eq. 20) and described below. The horizontal and vertical compo-
nents of the velocity and acceleration are respectively

_¥en 2 LM 4y @)
u, i lnks+Uc+ak(C k lnks Uc]sh(kd)cos( ot), (34
u,= ak(C —-ﬂln—d——Uc] _sll(_ky_l sin (kx—ot) 35
k, k, sh(kd)
and
B PR BT 1) S
a, = aak[C K In k. chSh kd) sin(kx—ot), (36)
I GO R 1(.) B
a,= aak(C K In 3 Uc] h (kd) cos(kx—ot), | 37

where C is given by equation (22). The trajectory of the particle centred at (x, y) at
time ¢ = 0 is described by the following equations:

__ k(o w,d o |ch)
X = G(C K lnks chsh( )sm(kx or), (38)
_akf_w, d . |sh(y) -
Y= G(C K lnks Uc) h( )cos(kx or) . (39)

The vertical pressure distribution is

34 ISSN 0233-7584. Mop. zudpogpus. xcypn., 2008, Ne 3



— _ W d | ch(ky)
p=-pgWy d)+pao(6 k lnks UJsh(kd)cos(kx ot)—
d 1—ch(2ky) “0)
pak|c-Ln Ly | TS
& ( ko, -ch 4sh’ (kd)

The mass, momentum and energy fluxes [42] in the rotational flow field to the
first order approximation are given respectively as

0= pd%ln%+ pU.d + a(C—%'-lnki U jj:ékk?) cos(ke—ot)+ O (a%k?), (41)

\4 5

2 k

v 5

2
M= ﬂ((,'—%ilnki—chcos(kx—m)Jr O(a%?), 42)

ud® (3 d . |1-ch(k)
E=—pg®@ 12 02| apelc-Yem_y, |12 oy
P8k, (2 "k ] apg( koK, j ksh(ka) SOSr—an

K3 v s

apou, U, _Ci_ pan _ i,@ﬁ
kksh(kd)(c p lnk UL,)[lnk-sh(kd) lnks 2 }cos(kx—ot)+ (43)

v 5

“‘I’C“U(c ~U,)cos(kx—ot) + = pgdU (d - y) + O(a*k?).

The irrotational flow properties for the wave-constant current in shallow
waves can be obtained by substituting u. = 0 in the above expressions. The corre-

sponding celerity, i.e., C =U + gd , may be obtained by substituting », = 0 and
U, =U in equation (22). Further substitution of u, = U,= 0; provides properties
for wave-only case and for which equation (22) becomes C =,/ gd.

7. Discussion and conclusions. This study presents the change in the perma-
nence and properties of regular shallow waves in the presence of vertically logarith-
mic current and can serve as a ground work for possible applications and advances.
The resultant stream function and wave surface describes the nonlinear interaction of
the combine wave-log current flow field. A close form solution of the corresponding
dispersion equation (equation (23)) is derived for shallow wave approximation and is
different in structure than that derived by [17] for wave-linear current. Equation (23)
reveals several features of WFC and WOC in three types of flow fields, wave-log
current, wave constant-current and wave-only cases. Table 1 presents the estimate of
frequencies for these flows for kd < 0.314, i.e. within shallow wave range. Presence
of logarithmic shear in following direction enhances pure wave frequency by 29%
whereas it is 38% in presence of constant current. These increased values over wave-
only case are due to the dominant distortion in eddy viscosity at surface in presence
of a following current. Some contrary mechanisms like wave damping and curvature
of eddy viscosity over flow depth tends to reduce o but are cancelled out by addi-
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tional supportive mechanisms like wave-induced Reynolds’ stress reduced friction
velocity in bottom boundary layer [2]. The difference of 9% can be attributed to the
distortion effect in presence of constant-current. This difference matches with the
calculated value of 7% (Table 1, 4™ column) for the wave following current if con-
stant current is replace by logarithmic shear.

The trend described above reverses in opposing current. The reduction in o
over wave-only case is just 35% in presence of logarithmic shear whereas it is 62%
is constant-current is assumed. This suggests rather strong effect of contrary
mechanisms than supportive ones. The difference of 27% matches with the calcu-
lated value of 20% (Table 1, 5™ column) for the WOC if constant current is re-
placed by logarithmic shear. Furthermore, change in flow direction causes 73%
change in ¢ in case of log-current whereas it is 124% in case of constant current.
This confirms stronger influence of surface distortion of eddy viscosity in presence
of constant current than log-current. Physically, the above statistics concludes that
wave speed increases in WFC but the increase in wave speed is slower in log-
current than constant-current. In case of WOC, the wave speed reduces and the re-
duction is slower in log-current than constant-current case. Moreover for high

roughness like natural beds, the magnitude of d/k; shall reduce, reflecting shal-

lower water depth and for a given wavelength, wave frequency of log-current will
be higher than that of constant-current for WFC and vice versa for WOC. This can
be judged from Fig. 2 in which the left side extrapolation of constant-current and
log-current data is crossing each other in both the WFC and WOC cases. These
observations show the difference in wave-current properties in presence of shear
effect, in turn recommends that presence of shear current should not be approxi-
mated by constant current.

The present model of dispersion equation follows all the established trends for
wave-constant current flow fields. The method of combine formulation used for
wave-log current (i) removes the possible errors involved when depth-wise log-
current is approximated by depth-wise constant or linear current, (ii) removes the
biases which exist when both the hydrodynamics (wave and log-current) are not
considered concurrently. The formulation also provides expressions for the cases of
wave-constant current flow and wave-only flow, by simply substituting u. = 0 or

=0and U =0, respectively.

The wave-log current model presented herein can be useful in accurate predic-
tion of dispersion of physico-chemical transport in uniform flow with wind waves,
impacts on marine life being important in the coastal zone and in flow studies on
vegetation where small change in the horizontal log-velocity result in twice as large
change in drag force. The application of such model can be extensive, in modeling
the physical hydrology, morphological evolution, sedimentology and toxicology of
a wide range of shallow water settings. Some of the finer studies like amount of
wave damping, surface distortion of eddy viscosity change in the turbulent stresses
and bottom friction velocity can be studied when the shear flow is vertically loga-
rithmic. The present formulation can also be a guideline for hydrodynamic labora-
tories where waves are to be generated over the steady log-current to conduct test-
ing and simulation studies.
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Appendix

A. Solution via exponential series. The integration of 3 by parts leads to

J= Iln %sh (kv)dv =7 l'n ~I’(Lch(ky)— r J:;: ch(ky)dy .

It can be noted that derivative of log term can be written as —g—[]n —y—j:-].
dy y ’

When this result is integrated, it will be j(l Iy)dy =Iny+C,, where C, is the con-

&

stant of integration and its value should be (', = ~Ink, to get back the original loga-
rithmic function. Thus the solution of J(l /y)dy=In(y/k.). The following deriva-

tion follows these solutions

1 I pe™ h
j;ch(kx,)dv = ;( dy + FTdyj. (A1)

P y

The integrals in formula (A1) can be written in the form of a series as

k3 3
S (A2)

PENE
Y 1

I—dy*ln -—+Q+
ko1t 2.2t 3.3

K

Substituting expressions (A2) in relation (A1), the odd terms cancel. Thus in-
tegral (Al)is

J (,h(ky)dy = In 4 Z ) n (A3)

k. “ ' 2n- 2n'

For the waves in shallow water, d/I. < 0.05, kd =2ad /1. <0314 . As such, se-
ries in equation (A3) can be truncated for ()(kd) and relation (A3) is simplified as

j—l-ch(ky)dy lnk (ky) (Ad)

y s

Thus, a close form solution for the shallow wave approximation can be ob-
tained as

I = Iln {—sh (kv)dy =~ % ln%\’ch(kv)—%liln kl+ (ki)g } ) (AS)

5 &

Applying the condition y = d to be satisfied at mean surface, the solution is

3z—'-|nich(kd)--—'-[lni+_%(kd)“}_
Kk Kk 4

Al
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B. Solution via Ei(z) function (exponential integral function). The integra-
tion of 3 by parts leads to

3= Iln—sh(lcy)dy —ln— h(ky)——— j—ch(ky)dy
in which
L el oo (€ Ve — L Tai k) Ei
;I—y—ch(ky)dy— 2k | x * X )dx] 2k[El( ky)+E|(ky)],
where x, = ky. Thus,
jln—-sh(ky)dy 1n__ch(ky)___[m(_ky)+n,(ky)] (B1)

Applying the condition y = d to be satisfied at mean surface, the formula (B1) is

Szl
k

kd )+ Ei(kd ).

s

The values of Ei(z) can be found from standard mathematical tables [43]. In
general the solution can be written as

1, d
3 =-k—ln7c-:-ch(kd)~—T,, (B2)

s

k 4

s

where T, =§‘;[Ei(-kd)+'Ei(kd)] or T, =%[1ni+(—"d—)z-}.
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