Исследование свободных колебаний уровня Азовского моря, возникающих после прекращения длительного действия ветра

© 2015 В.А. Иванов, Л.В. Черкесов, Т.Я. Шульга

Морской гидрофизический институт РАН, Севастополь, Россия E-mail: <u>shulgaty@mail.ru</u>

Поступила в редакцию 25.07.2014 г.

Анализируются физические закономерности свободных колебаний жидкости в Азовском море, возникающих после прекращения действия постоянного ветра. Для расчета применяется нелинейная трехмерная сигма-координатная модель, с использованием которой определяются пространственные характеристики сейшеобразных колебаний, расположение узловых линий и скорости возникающих при этом течений. В результате выполненных исследований установлено, что максимальные величины размахов сейшеобразных колебаний в прибрежной зоне сопоставимы с размерами штормовых сгонов и нагонов. При этом высоты свободных колебаний уровня в открытой части моря составляют 50 – 89% от высот колебаний вдоль береговой линии. В центральной части моря максимальные скорости течений при сейшеобразных колебаниях на 21% превышают скорости стационарных течений, вызванных штормовым ветром. Установлено, что сейши вносят существенный вклад в изменчивость скоростей течений. При этом свободные колебания уровня затухают быстрее амплитуд скоростей течений.

Ключевые слова: сигма-координатная модель, свободные колебания жидкости, сейши, стационарные течения, штормовые сгоны и нагоны, узловые линии.

В бассейне Азовского моря свободные волновые (сейшеобразные) колебания уровня, происходящие после прекращения действия атмосферных возмущений, наблюдаются постоянно. При этом в районах сужения береговых границ скорости течений могут достигать 1,5 м/с, а высоты волн – 0,8 м [1]. В этих случая создается реальная угроза возникновения экстремальных течений, затопления прибрежных районов моря и разрушения береговых сооружений.

Изучение сейшеобразных колебаний в Азовском море методом математического моделирования с учетом анализа данных натурных наблюдений проведено в работах [2, 3]. В [2] методом конечных элементов найдены значения периодов и структур первых шести мод свободных колебаний. В [3] сейшевые колебания уровня Азовского моря и течения, возникающие в результате нагонов величиной 1 м на открытой границе, исследованы в рамках линейной двумерной математической модели.

В данной работе с использованием нелинейной трехмерной численной модели анализируются физические закономерности свободных колебаний жидкости в акватории Азовского моря. Изучены пространственные характеристики сейшеобразных колебаний, расположение узловых линий и скорости возникающих при этом течений.

Постановка задачи. Граничные и начальные условия

Математическая модель основывается на системе уравнений турбулентного движения вязкой жидкости [4 - 6], записанной в декартовой системе координат, где ось *x* направлена на восток, *y* – на север, *z* – вертикально вверх:

МОРСКОЙ ГИДРОФИЗИЧЕСКИЙ ЖУРНАЛ № 2 2015

$$\frac{du}{dt} - fv + \frac{1}{\rho} \frac{\partial p}{\partial x} = 2 \frac{\partial}{\partial x} \left(A_M \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} A_M \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial z} K_M \frac{\partial u}{\partial z}, \qquad (1)$$

$$\frac{dv}{dt} + fu + \frac{1}{\rho} \frac{\partial p}{\partial y} = 2 \frac{\partial}{\partial y} \left(A_M \frac{\partial v}{\partial y} \right) + \frac{\partial}{\partial x} A_M \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) + \frac{\partial}{\partial z} K_M \frac{\partial v}{\partial z} , \qquad (2)$$

$$\frac{\partial p}{\partial z} + g\rho = 0, \qquad (3)$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0.$$
(4)

Здесь u, v, w – проекции скорости по осям x, y, z; t – время; p – давление; ρ – плотность; g – ускорение свободного падения; f – параметр Кориолиса; d/dt = $= \partial/\partial t + u\partial/\partial x + v\partial/\partial y + w\partial/\partial z -$ полная производная. Параметризация коэффициентов вертикальной вязкости К_м производится в соответствии с полуэмпирической дифференциальной моделью Меллора – Ямады [7]. Коэффициент горизонтальной вязкости A_M вычисляется с использованием модели подсеточной вязкости [8] в зависимости от горизонтальных градиентов скорости.

Граничные условия на свободной поверхности имеют вид

$$w\Big|_{z=\zeta} = \frac{\partial \zeta}{\partial t} + u \frac{\partial \zeta}{\partial x} + v \frac{\partial \zeta}{\partial y} , \quad K_M \left(\frac{\partial u}{\partial z}, \frac{\partial v}{\partial z}\right)\Big|_{z=\zeta} = \left(\tau_{0x}, \tau_{0y}\right), \tag{5}$$

где $\zeta(x, y, t)$ – профиль свободной поверхности; $\tau_{0x} = C_a W_x |\mathbf{W}|$ и $\tau_{0v} = C_a W_v |\mathbf{W}|$ – проекции касательных напряжений ветра, \mathbf{W} – вектор скорости ветра на высоте 10 м над уровнем моря, Са – эмпирический коэффициент поверхностного трения [9], который изменяется в зависимости от скорости ветра:

$$10^{3}C_{a} = \begin{cases} 2,5, & |\mathbf{W}| > 22 \text{ M/c}, \\ 0,49 + 0,065 |\mathbf{W}|, & 8 \le |\mathbf{W}| \le 22 \text{ M/c}, \\ 1,2, & 4 \le |\mathbf{W}| \le 8 \text{ M/c}, \\ 1,1, & 1 \le |\mathbf{W}| \le 4 \text{ M/c}. \end{cases}$$
(6)

Граничные условия в придонном слое имеют вид [6]

$$\left(w+u\frac{\partial H}{\partial x}+v\frac{\partial H}{\partial y}\right)_{z=-H}=0,\quad K_{M}\left(\frac{\partial u}{\partial z},\frac{\partial v}{\partial z}\right)_{z=-H+h_{b}}=\left(\tau_{1x},\tau_{1y}\right),\tag{7}$$

где $\tau_{1x} = C_{\rm b} u \sqrt{u^2 + v^2}$; $\tau_{1y} = C_{\rm b} v \sqrt{u^2 + v^2}$, $C_{\rm b}$ – коэффициент донного трения, который находится по формуле $C_{\rm b} = k^2 / (\ln^2 h_{\rm b} / z_0)$, $h_{\rm b}$ – шаг по вертикали в придонном слое, $z_0 = 0,003$ м – параметр шероховатости, характеризующий гидродинамические свойства подстилающей донной поверхности. Значение z_0 определяется с помощью теории Гранта – Мадсена [10], описывающей механизм влияния волн на течения в придонном пограничном слое. На боковых границах выполняются условия прилипания.

В качестве начальных (при t = 0) принимаются условия отсутствия движения жилкости и горизонтальности свободной поверхности до начала действия атмосферных возмущений:

$$u(x, y, z, 0) = 0, \quad v(x, y, z, 0) = 0, \quad w(x, y, z, 0) = 0, \quad \zeta(x, y, z, 0) = 0.$$
(8)

построения численного алгоритма применена POM Лля модель (Princeton Ocean Model) [6], адаптированная к условиям бассейна Азовского моря [11]. Выбор шагов интегрирования по временным и пространственным координатам осуществляется в соответствии с критерием устойчивости для баротропных волн [12]. Топография дна интерполирована на модельную сетку с использованием массива глубин, приведенного на навигационных картах. Ее разрешение по широте и долготе составляет 1/59 × 1/84°. При этом линейные размеры ячейки $\Delta x = \Delta y = 1,4$ км, количество узлов горизонтальной сетки 276 × 176, по вертикали 11 расчетных уровней. Уравнения интегрировались по времени с шагом $\Delta t = 18$ с для нахождения осредненных двумерных компонент скорости и уровня, а также с шагом $\Delta t_A = 10\Delta t = 3$ мин – для вычисления отклонений от найденных средних и вертикальной компонент скорости.

Атмосферные возмущения являются основным источником генерации сейш в Азово-Черноморском регионе [1]. Под влиянием ветра, имеющего устойчивое направление и скорость, возникают течения и повышения уровня у одного берега и понижения – у другого. После прекращения действия ветра имеют место свободные волновые колебания жидкости на поверхности моря.

С использованием результатов численных экспериментов, проведенных на основе указанной выше гидродинамической модели, изучается движение жидкости в бассейне Азовского моря после прекращения действия стационарного ветра. Начиная с t = 0, на первоначально невозмущенную поверхность действует восточный ветер, скорость которого нарастает за первые 3 ч до постоянного значения 20 м/с. После установления течений ($t_{st} = 48$ ч) скорость ветра линейно уменьшается за 3 ч до нуля ($t_0 = 51$ ч). Условие выхода движения жидкости на установившийся режим определяется тем, что между двумя соседними значениями времени не происходит заметных изменений отклонений уровня и скоростей течений (не более чем на 5%).

Анализ результатов численных экспериментов

С целью получения выводов о физических закономерностях свободных колебаний, возникающих после прекращения действия указанного выше ветра, проанализируем результаты численных экспериментов.

На рис. 1 показаны изолинии уровня моря в различные моменты времени. В начальный период поверхность уровня представляет собой одноузловую сейшу. В установившемся режиме (рис. 1, а) возникает понижение уровня вдоль восточного побережья (сгоны) и повышение - вдоль западного (нагоны). Узловая (штриховая) линия пересекает центральную часть моря, она МОРСКОЙ ГИДРОФИЗИЧЕСКИЙ ЖУРНАЛ № 2 2015 17 ориентирована перпендикулярно направлению ветра. Отметим, что самые интенсивные понижения происходят на востоке, в Таганрогском заливе, а наибольшие повышения – в западной части моря. Наименьшие амплитуды колебаний уровня имеют место в его центральной части.

Рис. 1. Изолинии уровня (м) Азовского моря при установившемся движении (a), в момент прекращения действия ветра (δ), через 3 ч (e), через 6 ч (z), через 9 ч (d), через 12 ч (e)

С прекращением действия ветра (рис. 1, $\delta - e$) возникает существенное изменение с течением времени расположения линий равного уровня и узловой линии. В момент прекращения действия ветра (рис. 1, δ) узловая линия не сместилась, а зоны сгона и нагона сохраняются в тех же областях моря, что и в установившемся режиме. При этом величины сгонов и нагонов уменьшаются. Из рис. 1, ϵ видно, что узловая линия через 3 ч после прекращения действия ветра развернута относительно центральной области моря и ориентирована в зональном направлении. Зоны сгона и нагона также сместились на запад, в сторону действующего ветра. В Таганрогском заливе прекращение действия ветра через 3 ч мало сказывается на изменениях уровня.

Через 6 ч (рис. 1, z) происходит дальнейшее перемещение узловой линии в восточном направлении. Области нагонов и сгонов перемещаются соответственно в южном и северном направлениях, при этом их величины существенно уменьшаются. На рис. 1, ∂ , e приведены изолинии уровня моря через 9 и 12 ч после прекращения действия ветра. Видно, что свободные колебания в указанные моменты времени имеют вид двухузловых сейш.

Изменения со временем колебаний уровня в любом пункте Азовского моря представляют собой суперпозицию сейш различных мод, на формирование которых влияет много факторов. Используя результаты численного моделирования, выполним анализ изменения амплитуд и периодов сейшеобразных колебаний в пунктах побережья и в центральной части бассейна.

В табл. 1 приведены экстремумы сейшеобразных колебаний (ζ_k ; k = 1, 4) в районе береговых станций Азовского моря и время их достижения (t_k). Из анализа представленных данных следует, что наибольший нагон, генерируемый восточным ветром, имеет место на ст. Геническ (2 м). После полного 18 МОРСКОЙ ГИДРОФИЗИЧЕСКИЙ ЖУРНАЛ № 2 2015 ослабления действия ветра происходит монотонное понижение уровня до наименьшего значения ($\zeta_1 = -0,27$ м; t = 9,5 ч). При этом размах колебания от стационарного нагона составляет 2,3 м. При t = 16,5 ч отмечается повышение уровня до 0,33 м. Размах второго колебания (0,6 м) в 3,8 раза меньше первого (на 1,63 м). Экстремальное значение при следующем колебании (– 0,12 м) имеет место через 8,2 ч (24,7 ч), его размах 0,45 м мало отличается от предыдущего (на 0,15 м). Максимум четвертого свободного колебания $\zeta_4 = 0,12$ м наступает через $t_4 = 32,7$ ч, его размах 0,24 м вдвое меньше предыдущего и в 9,6 раза меньше первого.

Таблица 1. Стационарные сгоны и нагоны (ζ_{st} , см), обусловленные действием постоянного восточного ветра со скоростью 20 м/с, время достижения (t_k , ч) и экстремумы сейшеобразных колебаний (ζ_k , $k = \overline{1, 4}$), возникающих после прекращения действия ветра, в прибрежной зоне Азовского моря

Станция	ζst	ζ_1	t_1	ζ_2	t_2	ζ3	t_3	ζ_4	t_4
Геническ	202	-27	9,5	33	16,5	-12	24,7	12	32,7
Бердянск	25	-57	2,5	46	7,7	-8	17,6	10	25,6
Мариуполь	-153	-1	12,3	-20	20,2	17	27,1	2	39,2
Таганрог	-158	-89	24,3	30	31,5	-8	41,3	8	50,4
Ейск	-244	-6	18,3	21	28,5	-2	38,9	7	55,7
ПАхтарск	-175	92	5,3	-10	13,9	34	21,3	-3	26,7
Темрюк	-18	103	2,7	-14	13,5	25	18,5	-5	28,5
Опасное	32	93	1,7	-8	13,0	23	18	-4	27,9
Мысовое	98	-20	8,7	26	15,4	-6	24,2	3	37,3

Используя результаты табл. 1, выполним анализ свободных колебаний на ст. Ейск, где отмечается наибольший сгон (– 2,44 м; $t = t_0$). Прекращение действия ветра вызывает повышение уровня ($\zeta_1 = -0,06$ м; t = 18,3 ч). При этом размах первого колебания составляет 2,38 м. В дальнейшем уровень продолжает повышаться и через 10,2 ч достигает наибольшего значения 0,21 м, размах второго колебания (0,27 м) в 8,8 раза меньше первого. Еще через 10,4 ч имеет место понижение уровня на 0,23 м ($\zeta_3 = -0,02$ м; t = 38,9 ч), размах колебания отличается от предыдущего на 0,04 м. Размах следующего колебания ($\zeta_4 = 0,07$ м), которое происходит через 16,9 ч ($t_4 = 55,7$ ч), составляет 0,1 м, что в 23,8 раза меньше первого.

На рис. 2 приведены поля течений в поверхностном слое Азовского моря в различные моменты времени. Видно, что в установившемся движении ($t_{st} = 48$ ч) векторы скорости течений вдоль северо-восточной части побережья и в Таганрогском заливе имеют преимущественное направление в одну сторону с действующим ветром (рис. 2, *a*). В центральной части моря отмечаются два вихревых образования противоположных знаков с пространственным масштабом ~100 км, между которыми выделяются узкие меандрирующие струи.

МОРСКОЙ ГИДРОФИЗИЧЕСКИЙ ЖУРНАЛ № 2 2015

Рис. 2. Поля течений Азовского моря при установившемся движении (*a*), в момент прекращения действия ветра (δ), через 3 ч (*b*), через 6 ч (*c*), через 9 ч (*d*), через 12 ч (*e*)

При уменьшении скорости ветра до нуля ($t = t_0$) процесс вихреобразования продолжает развиваться, а поле течений представляет собой цепочки вихрей (рис. 2, δ). В дальнейшем картина течений существенно меняется (рис. 2, s). Теперь во всей акватории моря векторы скорости течений направлены в сторону, противоположную действующему ветру, скорости больше, чем при t_{st} , и присутствует один вихрь возмущений. Через 6 и 9 ч после прекращения действия ветра течения остаются достаточно интенсивными и направлены в сторону, противоположную стационарному ветру (рис. 2, c, d). При этом вдоль северного побережья начинает формироваться антициклонический вихрь. Через 12 ч (рис. 2, e) в Таганрогском заливе сохраняется направление течений с запада на восток, у входа в него имеет место антициклонический вихрь, в центральной и западной частях моря течения направлены в противо-положную сторону (с востока на запад).

Пункт	$\zeta_{\rm st}$	ζ_1	t_1	ζ_2	t_2	ζ3	t_3	ζ4	t_4
B_0	4	33	7,7	2	14,7	8	20,6	2	29,6
B_1	- 46	59	5,6	-3	15,3	18	22,1	0	30,5
B_2	5	-37	1,9	43	7,4	-3	17,4	10	23,9
B_3	48	2	4,3	16	8,8	2	19,4	2	22,3
B_4	10	53	2,8	1	13,7	15	18,5	0	28,6
B_5	-125	88	5,3	-10	16,3	30	21,5	-2	27,0
B_6	10	-52	1,9	45	7,4	-7	17,4	10	24,7
B_7	101	-14	5,7	25	13,3	-2	20,3	7	28,8
B_8	11	86	2,5	-8	13,3	22	18,3	-3	28,1

Таблица 2. Экстремумы сейшеобразных колебаний, возникающих после прекращения действия ветра, в открытой части Азовского моря

Примечание. Обозначения – в табл. 1.

Для определения периодов и амплитуд сейш в открытой части Азовского моря в табл. 2 приводятся экстремумы сейшеобразных колебаний (см), возникающих после затухания ветра, и соответствующие им моменты времени для 20 МОРСКОЙ ГИДРОФИЗИЧЕСКИЙ ЖУРНАЛ № 2 2015 9 пунктов моря (рис. 3). Из анализа представленных данных следует, что наименьшее отклонение уровня в установившемся режиме движения (0,04 м) имеет место в амфидромической точке B_0 (46,25° с. ш., 36,46° в. д.) – геометрическом центре бассейна. В пунктах, расположенных на расстоянии 50 км от центра, амплитуды уровня значительно выше. Так, максимумы отклонений уровня в п. B_5 и B_7 составляют соответственно –1,25 и 1 м, что в 31,3 и 25,3 раза больше, чем в точке B_0 ($t = t_{st}$). Из сравнения наибольших значений – нагона на ст. Геническ (2 м) и повышения уровня в п. B_7 (1,01 м), сгона на ст. Ейск (2,44 м) и понижения уровня в п. B_5 (–1,25 м) – следует, что стационарные нагоны и сгоны двукратно превышают максимальные отклонения уровня в открытой части моря.

Рис. 3. Рельеф дна (м) и расположение пунктов $B_0 - B_8$ в центральной части Азовского моря

Анализируя табл. 2, отметим, что максимальное повышение уровня моря имеет место в п. B_7 (1,01 м). После полного ослабления действия ветра происходит монотонное понижение уровня до наименьшего значения (ζ_1 = = -0,14 м; t_1 = 5,7 ч). При этом размах колебания составляет 1,15 м. Через 7,6 ч отмечается повышение уровня (ζ_2 = 0,25 м; t_2 = 13,3 ч). Размах второго колебания (0,39 м) в 3 раза меньше первого. Экстремальное понижение при следующем колебании ζ_3 = - 0,02 м имеет место через 7 ч, его размах 0,27 м отличается от предыдущего на 0,12 м. Следующее экстремальное повышение уровня (ζ_4 = 0,07 м) возникает через 8,5 ч с размахом 0,09 м, который в 12,7 раза меньше первого, оно отмечается через 28,8 ч от момента времени $t = t_0$.

Наибольшее понижение уровня моря среди всех рассматриваемых пунктов происходит в п. B_5 (- 1,25 м), через 5,3 ч с размахом 2,13 м достигается максимум первого свободного колебания ($\zeta_1 = 0,88$ м). Через 11 ч

имеет место наибольшее понижение уровня ($\zeta_2 = -0,1$ м; t = 16,3 ч), размах колебания (0,98 м) в 2,2 раза меньше первого. Следующий экстремум свободных колебаний достигается через 5,2 ч ($\zeta_3 = 0,3$ м), размах 0,4 м меньше предыдущего в 2,5 раза. Понижение уровня $\zeta_4 = -0,02$ м происходит через 5,5 ч с размахом колебания 0,32 м, который в 6,7 раза меньше первого, оно наступает через 27 ч от момента времени $t = t_0$.

Особенности высот сейшеобразных колебаний в центральной части моря наиболее четко проявляются при сопоставлении с высотами сейш, возникающих в прибрежных районах. Из анализа данных табл. 1 и 2 следует, что амплитуды и размахи свободных колебаний в пунктах открытой части Азовского моря (табл. 2) меньше, чем на береговых станциях. При этом наибольшие значения отклонений уровня в прибрежной и центральной частях моря в стационарном режиме отличаются в два раза, а экстремумы сейшеобразных колебаний – в 1,2 – 2 раза. Наибольшие значения размахов первых колебаний для сгонов на ст. Ейск (2,38 м) в 1,2 раза меньше, чем в п. B_5 (2,13 м), для нагонов на ст. Геническ (2,3 м) они в 2 раза больше, чем в п. B_7 (1,15 м). Таким образом, экстремальные размахи сейшевых колебаний в открытой части моря сопоставимы с размахами свободных колебаний в прибрежных районах и составляют 50 – 89% от последних.

Время достижения экстремумов собственных колебаний, приведенное в табл. 1 и 2, позволяет выполнить сравнение двух первых периодов в береговой и открытой частях моря. Период первого свободного колебания в пунктах побережья составляет 15 – 16 ч, на ст. Ейск – 21 ч. Период второго свободного колебания 13 – 19 ч, на ст. Мысовое – 22 ч, на ст. Ейск – 27 ч. При этом в центральной части Азовского моря первое сейшеобразное колебание совершается за 13 – 16,5 ч, второе – за 11 – 17 ч. Следовательно, за исключением станций, расположенных на сложных береговых линиях (рис. 3), первые периоды сейш центральной и береговой частей моря отличаются на 2 - 3 ч.

В табл. З приведены значения скоростей поверхностных стационарных течений ($|\mathbf{U}|_{st}$, см/с), вызванных действием постоянного восточного ветра со скоростью 20 м/с, а также скоростей течений сейшеобразных колебаний ($|\mathbf{U}|_k$, $k = \overline{1, 6}$) в центральной части Азовского моря (рис. 3). Здесь же указаны соответствующие им моменты времени (t_{k_2} ч).

В районе узловой линии сейшеобразных колебаний (рис. 1, δ), где вертикальные колебания уровня близки к нулю, расположены пункты B_0 , B_3 , B_4 , B_7 и B_8 . Рассмотрим некоторые из них. Из анализа данных, представленных в табл. 3, следует, что в п. B_0 первое экстремальное значение скорости $|\mathbf{U}|_1 =$ = 66,3 см/с превышает стационарную скорость $|\mathbf{U}|_{st} = 20,8$ см/с в 3,2 раза. Через 13,8 ч значение скорости ($|\mathbf{U}|_4 = 3,7$ см/с) существенно уменьшается – в 5,6 раза – по сравнению с $|\mathbf{U}|_{st}$ и в 18 раз – по сравнению с $|\mathbf{U}|_1$. Дальнейшее 22 МОРСКОЙ ГИДРОФИЗИЧЕСКИЙ ЖУРНАЛ № 2 2015 убывание скорости до 1 - 2 см/с происходит через 29,2 ч. Аналогичное изменение скорости имеет место в п. B_3 . Скорость течений в начале сейшеобразных колебаний (84,8 см/с) значительно превосходит скорость при стационарном движении (2,6 см/с), при этом время, за которое интенсивность течений уменьшается до 1 см/с, составляет 24,1 ч.

Таблица 3. Максимальные скорости поверхностных стационарных течений ($|U|_{st}$), вызванных действием постоянного восточного ветра со скоростью 20 м/с, и максимальные скорости течений ($|U|_k$, $k = \overline{1, 6}$), возникающих после прекращения действия ветра, с соответствующими моментами времени в центральной части Азовского моря

Пуцит	$ U _{st}$,	$ U _1$,	t_1 ,	$ U _{2}$,	<i>t</i> ₂ ,	$ U _{3}$,	<i>t</i> ₃ ,	$ U _{4}$,	<i>t</i> ₄ ,	U 5,	<i>t</i> ₅ ,	U ₆ ,	<i>t</i> ₆ ,
пункі	см/с	см/с	Ч	см/с	ч	см/с	Ч	см/с	Ч	см/с	Ч	см/с	Ч
B_0	20,8	66,3	0,6	57,9	2,2	64,2	4,1	3,7	13,8	16,0	20,1	0,2	29,2
B_1	40,1	52,9	4,4	16,7	9,7	5,9	13,4	10,9	16,1	9,0	18,0	1,9	34,3
B_2	47,0	57,1	0,8	7,8	12,0	18,3	20,2	1,4	31,6	2,1	36,4	1,8	37,8
B_3	2,6	84,8	0,8	0,7	8,0	21,0	10,2	0,5	14,2	15,5	17,1	0,1	24,1
B_4	19,0	72,4	0,7	6,5	8,3	18,1	11,0	1,4	14,5	11,5	17,5	3,2	23,3
B_5	13,2	22,5	8,8	6,9	14,0	18,4	7,4	3,4	21,7	10,7	24,1	1,2	35,1
B_6	70,4	69,2	0,8	4,0	10,7	21,4	14,7	2,3	26,8	0,4	31,0	1,1	32,6
B_7	22,8	46,2	0,9	41,1	2,1	43,7	3,9	5,1	8,6	19,5	11,3	3,1	14,4
B_8	24,5	79,2	0,9	5,7	6,1	11,9	17,6	1,4	21,3	11,0	26,3	0,3	33,4

В пунктах B_1 , B_2 , B_5 , B_6 , расположенных на удалении 50 и 100 км в зональном направлении от амфидромической точки B_0 , начало свободных движений жидкости не приводит к столь резкому изменению стационарной скорости. Изменение скорости сейшеобразных колебаний рассмотрим на примере п. B_1 , расположенного на 50 км восточнее п. B_0 . Здесь скорость установившегося течения $|\mathbf{U}|_{st} = 40,1$ см/с мало отличается от первого экстремального значения скорости сейшеобразных колебаний $|\mathbf{U}|_1 = 52,9$ см/с ($t_1 = 4,4$ ч), превышение составляет 1,3 раза. Уменьшение скорости до 2 см/с происходит здесь на 9 – 12 ч дольше (через 34,3 ч), чем в районе узловой линии.

Из анализа величин модуля скорости следует, что в открытом море преобладают высокие скорости течений, до 84,8 см/с (п. *B*₃). При этом направление поверхностных течений имеет вихревой характер с доминирующим меридиональным движением потоков.

Численные эксперименты с использованием гидродинамической модели показали, что затухание свободных колебаний в пунктах центральной части моря происходит быстрее, чем в береговых районах (максимум амплитуды не превышает 2 см). Время затухания свободных колебаний жидкости в прибрежном районе составляет 92,1 ч, что на 23,7 ч больше, чем в центральной части моря (68,4 ч). Периоды первого колебания в центральной и береговой частях Азовского моря также различны. Наибольшие по периоду сейшевые МОРСКОЙ ГИДРОФИЗИЧЕСКИЙ ЖУРНАЛ № 2 2015 23 колебания в прибрежном районе (ст. Ейск и Таганрог) составляют 20,6 и 17 ч, что на 4,1 и 0,8 ч больше, чем в центральной части моря (п. B_1 и B_5) – 16,5 и 16,2 ч.

Выводы

На основании результатов моделирования свободных колебаний жидкости в Азовском море, возникающих после прекращения действия ветра, выполнен анализ физических закономерностей пространственного распределения отклонений уровня и скоростей течений.

Максимальные величины размахов сейшеобразных колебаний в прибрежной зоне сопоставимы с величинами штормовых сгонов и нагонов, при этом высоты свободных колебаний в открытой части моря составляют 50 – 89% от высот колебаний в прибрежной зоне.

В центральной части моря максимальные скорости течений (84,8 м/с) при сейшеобразных колебаниях на 21% превышают скорости стационарных течений, вызванных штормовым ветром (70,4 м/с). Таким образом, сейши вносят существенный вклад в изменчивость скоростей течений.

Свободные колебания уровня (не более 2 см) затухают быстрее (60 ч), чем амплитуды скоростей течений, которые не превышают 2 см/с и прослеживаются в интервале времени 60 – 200 ч.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Доценко С.Ф., Иванов В.А.* Природные катастрофы Азово-Черноморского региона. Севастополь: Морской гидрофизический институт НАН Украины, 2010. 174 с.
- 2. *Иванов В.А., Манилюк Ю.В., Черкесов Л.В.* О сейшах Азовского моря // Метеорология и гидрология. 1994. № 6. С. 105 110.
- 3. *Матишов Г.Г., Инжебейкин Ю.И.* Численные исследования сейшеобразных колебаний уровня Азовского моря // Океанология. 2009. <u>49</u>, № 4. С. 485 493.
- 4. Сретенский Л.Н. Теория волновых движений жидкости. М.: Наука, 1977. 816 с.
- 5. *Черкесов Л.В., Иванов В.А., Хартиев С.М.* Введение в гидродинамику и теорию волн. СПб.: Гидрометеоиздат, 1992. 264 с.
- Blumberg A.F., Mellor G.L. A description of three dimensional coastal ocean circulation model // Three-Dimensional Coastal Ocean Models / Ed. N. Heaps. – Washington, D. C.: American Geophysical Union, 1987. – P. 1 – 16.
- 7. *Mellor G.L., Yamada T.* Development of a turbulence closure model for geophysical fluid problems // Rev. Geophys. Space Phys. 1982. <u>20</u>, № 4. P. 851 875.
- 8. Smagorinsky J. General circulation experiments with primitive equations, I. The basic experiment // Mon. Wea. Rev. 1963. <u>91</u>, № 3. P. 99 164.
- Wannawong W., Humphries U.W., Wongwises P. et al. Mathematical modeling of storm surge in three dimensional primitive equations // Inter. Comp. Math. Sci. – 2011. – № 5. – P. 44 – 53.

- Grant W.D., Madsen O.S. Combined wave and current interaction with a rough bottom // J. Geophys. Res. - 1979. - <u>84</u>. - P. 1797 - 1808.
- Фомин В.В. Численная модель циркуляции вод Азовского моря // Научные труды Укр-НИГМИ. – 2002. – Вып. 249. – С. 246 – 255.
- 12. Courant R., Friedrichs K.O., Lewy H. On the partial difference equations of mathematical physics // IBM J. 1967. March. P. 215 234.

Studies of free fluctuations of the Azov Sea level arising after the prolonged wind has stopped

V.A. Ivanov, L.V. Cherkesov, T.Ya. Shul'ga

Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russia e-mail: <u>shulgaty@mail.ru</u>

Physical regularities of liquid free fluctuations in the Sea of Azov arising after constant wind has stopped, are analyzed. The calculation is done by a nonlinear three-dimensional sigma-coordinate model. Its application permits to define spatial characteristics of seiche-like fluctuations, arrangement of nodal lines and velocities of the arising currents. The performed studies result in revealing the fact that maximum seiche-like oscillations in the coastal zone are comparable to the scales of storm surge phenomena. At that the level free fluctuations' heights in the open sea make 50 - 89% of those along the coastline. In the central part of the sea at seiche-like fluctuations, the currents' maximum velocities exceed the velocities of the gale-induced stationary currents by 21%. It is found that seiches make essential contribution to variability of currents' velocities. At that the level free fluctuations attenuate faster than the amplitudes of currents' velocities.

Keywords: three-dimensional nonlinear model, free fluctuations of liquid, seiche, stationary currents, surge phenomena processes, nodal lines.